# Planets in the habitable zone around most stars, calculate researchers

##### March 18, 2015

Astronomers have discovered thousands of exoplanets in our galaxy, the Milky Way, using the Kepler satellite and many of them have multiple planets orbiting the host star. By analysing these planetary systems, researchers from the Australian National University and the Niels Bohr Institute in Copenhagen have calculated the probability for the number of stars in the Milky Way that might have planets in the habitable zone. The calculations show that billions of the stars in the Milky Way will have one to three planets in the habitable zone, where there is the potential for liquid water and where life could exist. The results are published in the scientific journal, Monthly Notices of the Royal Astronomical Society.

Using NASA's Kepler satellite, astronomers have found about 1,000 around stars in the Milky Way and they have also found about 3,000 other potential planets. Many of the stars have planetary systems with 2-6 planets, but the stars could very well have more planets than those observable with the Kepler satellite, which is best suited for finding large planets that orbit relatively close to their stars.

Planets that orbit close to their stars would be too scorching hot to have life, so to find out if such planetary systems might also have planets in the habitable zone with the potential for liquid water and life, a group of researchers from the Australian National University and the Niels Bohr Institute at the University of Copenhagen made calculations based on a new version of a 250-year-old method called the Titius-Bode law.

Calculating planetary positions

The Titius-Bode law was formulated around 1770 and correctly calculated the position of Uranus before it was even discovered. The law states that there is a certain ratio between the orbital periods of planets in a solar system. So the ratio between the orbital period of the first and second planet is the same as the ratio between the second and the third planet and so on. Therefore, if you knew how long it takes for some of the planets to orbit around the Sun/star, you can calculate how long it takes for the other planets to orbit and can thus calculate their position in the planetary system. You can also calculate if a planet is 'missing' in the sequence.

"We decided to use this method to calculate the potential planetary positions in 151 planetary systems, where the Kepler satellite had found between 3 and 6 planets. In 124 of the planetary systems, the Titius-Bode law fit with the position of the planets. Using T-B's law we tried to predict where there could be more planets further out in the planetary systems. But we only made calculations for planets where there is a good chance that you can see them with the Kepler satellite," explains Steffen Kjær Jacobsen, PhD student in the research group Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen.

In 27 of the 151 planetary systems, the planets that had been observed did not fit the T-B law at first glance. They then tried to place planets into the 'pattern' for where planets should be located. Then they added the planets that seemed to be missing between the already known planets and also added one extra planet in the system beyond the outermost known planet. In this way, they predicted a total of 228 planets in the 151 planetary systems.

"We then made a priority list with 77 planets in 40 planetary systems to focus on because they have a high probability of making a transit, so you can see them with Kepler. We have encouraged other researchers to look for these. If they are found, it is an indication that the theory stands up," explains Steffen Kjær Jacobsen.

Planets in the habitable zone

Planets that orbit very close around a star are too scorching hot to have liquid water and life and planets that are far from the star would be too deep-frozen, but the intermediate habitable zone, where there is the potential for liquid water and life, is not a fixed distance. The habitable zone for a planetary system will be different from star to star, depending on how big and bright the star is.

The researchers evaluated the number of planets in the habitable zone based on the extra planets that were added to the 151 planetary systems according to the Titius-Bode law. The result was 1-3 planets in the habitable zone for each .

Out of the 151 planetary systems, they now made an additional check on 31 planetary systems where they had already found planets in the habitable zone or where only a single extra planet was needed to meet the requirements.

"In these 31 planetary systems that were close to the habitable zone, our calculations showed that there was an average of two planets in the habitable zone. According to the statistics and the indications we have, a good share of the planets in the habitable zone will be solid planets where there might be liquid water and where life could exist," explains Steffen Kjær Jacobsen.

If you then take the calculations further out into space, it would mean that just in our galaxy, the Milky Way, there could be billions of stars with planets in the , where there could be and where life could exist.

He explains that what they now want to do is encourage other researchers to look at the Kepler data again for the 40 planetary systems that they have predicted should be well placed to be observed with the Kepler satellite.

Explore further: Scientists predict earth-like planets around most stars

More information: Monthly Notices of the Royal Astronomical Society, mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv221 . On ArXiv: arxiv.org/abs/1412.6230

## Related Stories

#### Scientists predict earth-like planets around most stars

February 4, 2015

Planetary scientists have calculated that there are hundreds of billions of Earth-like planets in our galaxy which might support life.

#### Some habitable exoplanets could experience wildly unpredictable climates

March 12, 2015

As telescopes of ever-greater power scan the cosmos looking for life, knowing where to look—and where not to waste time looking—will be of great value.

#### Eight new planets found in 'Goldilocks' zone

January 6, 2015

Astronomers announced today that they have found eight new planets in the "Goldilocks" zone of their stars, orbiting at a distance where liquid water can exist on the planet's surface. This doubles the number of small planets ...

#### Earth-like planets are more likely to orbit sun-like stars rather than lower-mass stars

February 17, 2015

Simulations by researchers at Tokyo Institute of Technology and Tsinghua University indicate that Earth-like planets are more likely to be found orbiting Sun-like stars rather than lower-mass stars that are currently targeted, ...

#### Kepler marks five years in space

March 7, 2014

(Phys.org) —Five years ago today, on March 6, 2009, NASA's Kepler Space Telescope rocketed into the night skies above Cape Canaveral Air Force Station in Florida to find planets around other stars, called exoplanets, in ...

#### Is our solar system weird?

July 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

## Recommended for you

#### Juno mission prepares for December 11 Jupiter flyby

December 9, 2016

On Sunday, December 11, at 9:04 a.m. PST (12:04 p.m. EST, 17:04 UTC) NASA's Juno spacecraft will make its third science flyby of Jupiter.

#### Research offers clues about the timing of Jupiter's formation

December 9, 2016

A peculiar class of meteorites has offered scientists new clues about when the planet Jupiter took shape and wandered through the solar system.

#### Early US astronauts faced uncertainty, danger and death

December 9, 2016

John Glenn became the first American to orbit the Earth in 1962, but for a solid hour of that journey, NASA feared he was about to die in a blazing fireball.

#### Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

#### Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

#### Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...