First light for SPHERE exoplanet imager

June 4, 2014
This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus. It was one of the first produced by the SPHERE instrument soon after it was installed on ESO's Very Large Telescope in May 2014. It shows not only the ring itself with great clarity, but also reveals the power of SPHERE to reduce the glare from the very bright star -- the key to finding and studying exoplanets in future. Credit: ESO/J.-L. Beuzit et al./SPHERE Consortium

SPHERE—the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument—has been installed on ESO's Very Large Telescope at the Paranal Observatory in Chile. This powerful facility for studying exoplanets uses multiple advanced techniques in combination. It offers dramatically better performance than existing instruments and has produced impressive views of dust discs around nearby stars and other targets during the very first days of observations. It is expected to revolutionize the study of exoplanets and circumstellar discs. Included is one of the best images so far of the ring of dust around the nearby star HR 4796A.

SPHERE passed its acceptance tests in Europe in December 2013 and was then shipped to Paranal. The delicate reassembly was completed in May 2014 and the instrument is now mounted on VLT Unit Telescope 3. SPHERE is the latest of the second generation of instruments for the VLT (the first three were X-shooter, KMOS and MUSE).

SPHERE combines several advanced techniques to give the highest contrast ever reached for direct planetary imaging—far beyond what could be achieved with NACO, which took the first ever direct image of an exoplanet. To reach its impressive performance SPHERE required early development of novel technologies, in particular in the area of adaptive optics, special detectors and coronagraph components.

"SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!" says Jean-Luc Beuzit, of the Institut de Planétologie et d'Astrophysique de Grenoble, France and Principal Investigator of SPHERE.

SPHERE's main goal is to find and characterise giant exoplanets orbiting by direct imaging. This is an extremely challenging task as such planets are both very close to their parent stars in the sky and also very much fainter. In a normal image, even in the best conditions, the light from the star totally swamps the weak glow from the planet. The whole design of SPHERE is therefore focused on reaching the highest contrast possible in a tiny patch of sky around the dazzling star.

The first of three novel techniques exploited by SPHERE is extreme adaptive optics to correct for the effects of the Earth's atmosphere so that images are sharper and the contrast of the exoplanet increased. Secondly, a coronagraph is used to block out the light from the star and increase the contrast still further. Finally, a technique called differential imaging is applied that exploits differences between planetary and stellar light in terms of its colour or polarisation—and these subtle differences can also be exploited to reveal a currently invisible exoplanet.

SPHERE was designed and built by the following institutes: Institut de Planétologie et d'Astrophysique de Grenoble; Max-Planck-Institut für Astronomie in Heidelberg; Laboratoire d'Astrophysique de Marseille; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique de l'Observatoire de Paris; Laboratoire Lagrange in Nice; ONERA; Observatoire de Genève; Italian National Institute for Astrophysics coordinated by the Osservatorio Astronomico di Padova; Institute for Astronomy, ETH Zurich; Astronomical Institute of the University of Amsterdam; Netherlands Research School for Astronomy (NOVA-ASTRON) and ESO.

During the first light observations several test targets were observed using the many different modes of SPHERE. These include one of the best images so far of the ring of dust around the nearby star HR 4796A. It not only shows the ring with exceptional clarity but also illustrates how well SPHERE can suppress the glare of the bright star at the centre of the picture.

Following further extensive tests and science verification observations SPHERE will be made available to the astronomical community later in 2014.

"This is just the beginning. SPHERE is a uniquely powerful tool andwill doubtless reveal many exciting surprises in the years to come," concludes Jean-Luc Beuzit.

Explore further: World's fastest and most sensitive astronomical camera

Related Stories

World's fastest and most sensitive astronomical camera

June 18, 2009

The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1,500 finely exposed images per second even when observing extremely faint objects. ...

Lightest exoplanet imaged so far?

June 3, 2013

(Phys.org) —A team of astronomers using ESO's Very Large Telescope has imaged a faint object moving near a bright star. With an estimated mass of four to five times that of Jupiter, it would be the least massive planet ...

Far out: A giant exoplanet where none has been seen before

May 23, 2014

Humans have an eye for the familiar: for people, for civilizations, for planets and planetary systems that match what we have seen in the past. For this reason, as well as a few others, we rarely find something truly unique ...

Recommended for you

Measuring the shape of the Milky Way's black hole

June 24, 2016

At the heart of our galaxy's center is SagA*, a supermassive black hole containing about four million solar-masses of material. SgrA* is relatively faint, unlike the supermassive black holes in some other galaxies. This is ...

Image: Hubble sees new dark spot on Neptune

June 24, 2016

New images obtained on May 16, 2016, by NASA's Hubble Space Telescope confirm the presence of a dark vortex in the atmosphere of Neptune. This full visible-light image shows that the dark feature resides near and below a ...

Dormant black hole eats star, becomes X-ray flashlight

June 22, 2016

Roughly 90 percent of the biggest black holes in the known universe are dormant, meaning that they are not actively devouring matter and, consequently, not giving off any light or other radiation. But sometimes a star wanders ...

'Space tsunami' causes the third Van Allen Belt

June 20, 2016

Earth's magnetosphere, the region of space dominated by Earth's magnetic field, protects our planet from the harsh battering of the solar wind. Like a protective shield, the magnetosphere absorbs and deflects plasma from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.