NASA image: Giant landform on Mars

Jun 06, 2014 by Matthew Chojnacki
Credit: NASA/JPL/University of Arizona

(Phys.org) —Sandy landforms formed by the wind, or aeolian bedforms, are classified by the wavelength—or length—between crests. On Mars, we can observe four classes of bedforms (in order of increasing wavelengths): ripples, transverse aeolian ridges (known as TARs), dunes, and what are called "draa." All of these are visible in this Juventae Chasma image.

Ripples are the smallest bedforms (less than 20 meters) and can only be observed in high-resolution images commonly superposed on many surfaces. TARs are slightly larger bedforms (wavelengths approximately 20 to 70 meters), which are often light in tone relative to their surroundings. Dark-toned dunes (wavelengths 100 meters to 1 kilometer) are a common landform and many are active today. What geologists call "draa" is the highest-order bedform with largest wavelengths (greater than 1 kilometer), and is relatively uncommon on Mars.

Here, this giant draa possesses steep faces or slip faces several hundreds of meters tall and has lower-order superposed bedforms, such as and dunes. A bedform this size likely formed over thousands of Mars years, probably longer.

This image was acquired by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter on Jan. 6, 2014. The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Science Mission Directorate, Washington.

Explore further: NASA image: Active dune field on Mars

add to favorites email to friend print save as pdf

Related Stories

NASA image: Active dune field on Mars

May 05, 2014

Nili Patera is one of the most active dune fields on Mars. As such, it is continuously monitored with the HiRISE (High Resolution Imaging Science Experiment) camera, a science instrument aboard NASA's Mars ...

NASA Mars orbiter examines dramatic new crater

Feb 05, 2014

(Phys.org) —Space rocks hitting Mars excavate fresh craters at a pace of more than 200 per year, but few new Mars scars pack as much visual punch as one seen in a NASA image released today.

Mars orbiter images rover and tracks in Gale Crater

Jan 09, 2014

(Phys.org) —NASA's Curiosity Mars rover and its recent tracks from driving in Gale Crater appear in an image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance ...

Image: Martian sand dunes in spring

Mar 07, 2014

(Phys.org) —Mars' northern-most sand dunes are beginning to emerge from their winter cover of seasonal carbon dioxide (dry) ice. Dark, bare south-facing slopes are soaking up the warmth of the sun.

Image: A whole new world for Curiosity

Aug 14, 2012

(Phys.org) -- This color-enhanced view -- taken by the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter as the satellite flew overhead -- shows the terrain around ...

Recommended for you

The latest observations of interstellar particles

5 hours ago

With all the news about Voyager 1 leaving the heliosphere and entering interstellar space you might think that the probe is the first spacecraft to detect interstellar particles. That isn't entirely true, ...

Hepatitis C virus proteins in space

5 hours ago

Two researchers at Technische Universität München have won the 'International Space Station Research Competition' with their project 'Egypt Against Hepatitis C Virus.' As their prize, the scientists will ...

Very Long Baseline Array takes radio image of Voyager 1

6 hours ago

The image above is a radio image of Voyager 1. It was taken from the Very Long Baseline Array, which is a collection of 10 radio telescopes scattered from Hawaii to the Virgin Islands. It captures the faint ...

User comments : 0