Pair of seismologists publicly wonder if it might be possible to predict largest earthquakes

May 16, 2014 by Bob Yirka report
Aerial photo of the San Andreas Fault in the Carrizo Plain, northwest of Los Angeles. Credit: Wikipedia.

(Phys.org) —Seismologists Emily Brodsky and Thorne Lay with the University of California have gone out on a limb of sorts by publicly wondering if it might be possible to predict the largest types of earthquakes by studying foreshock patterns and characteristics. Together they've published a Perspective piece in the journal Science, questioning the traditional belief in the earth sciences field that it's impossible to predict earthquakes of any kind and likely will always be that way.

Earthquakes are impossible to predict, at least for now, because they don't behave the same way before they occur. Sometimes there are foreshocks, sometimes not, sometimes animals seem to sense something is up, other times they don't. There are just no discernible patterns that could be used as a sign of an impending . But, the research duo suggest, that doesn't mean there couldn't be, especially for special types of quakes—those that lie along subduction zones.

Brodksy and Lay point out that foreshocks occurred along just such a prior to the that rocked Chile this past April. They note also that a very similar pattern occurred just prior to the massive 9.0 quake that shook Japan three years ago. They acknowledge that similar small quake clusters also occur along fault lines that never result in earthquakes, which of course, is why they haven't been used to predict earthquakes. It's for this reason that the two are calling for better monitoring systems. Currently there are few permanently installed along major subduction zones, due to the fact that most are along the ocean floor. They suggest that if pressure sensors were installed and data stored in a database, it might be that clues would reveal themselves. Perhaps, they propose, foreshocks behave in certain ways before a big quake that differ from small quake clusters not related to a bigger event. The only way to find out, they say, is to put in sensors.

Governments big and small have been reluctant to install such sensors because of the huge cost involved—adding them along just one coast could cost billions of dollars—an investment that has no certainty of paying off. Thus, it's doubtful that one paper by a pair of researchers is likely to cause any major changes to the status quo, though it might cause some in the scientific community to begin to question what is possible and what isn't as it pertains to predicting earthquakes—and that might be all the two authors are really trying to achieve.

Explore further: Global map to predict giant earthquakes

More information: Recognizing Foreshocks from the 1 April 2014 Chile Earthquake, Science 16 May 2014: Vol. 344 no. 6185 pp. 700-702. DOI: 10.1126/science.1255202

Abstract
Are there measurable, distinctive precursors that can warn us in advance of the planet's largest earthquakes? Foreshocks have long been considered the most promising candidates for predicting earthquakes. At least half of large earthquakes have foreshocks, but these foreshocks are difficult or even impossible to distinguish from non-precursory seismic activity. The foreshocks for the 1 April 2014 Chile event and other recent large earthquakes suggest that observable precursors may exist before large earthquakes.

add to favorites email to friend print save as pdf

Related Stories

Global map to predict giant earthquakes

Dec 12, 2013

A team of international researchers, led by Monash University's Associate Professor Wouter Schellart, have developed a new global map of subduction zones, illustrating which ones are predicted to be capable of generating ...

Are large earthquakes linked across the globe?

Aug 02, 2012

The past decade has been plagued with what seems to be a cluster of large earthquakes, with massive quakes striking Sumatra, Chile, Haiti and Japan since 2004. Some researchers have suggested that this cluster has occurred ...

Is there an ocean beneath our feet?

Jan 27, 2014

(Phys.org) —Scientists at the University of Liverpool have shown that deep sea fault zones could transport much larger amounts of water from the Earth's oceans to the upper mantle than previously thought.

Recommended for you

Excavated ship traced to Colonial-era Philadelphia

31 minutes ago

Four years ago this month, archeologists monitoring the excavation of the former World Trade Center site uncovered a ghostly surprise: the bones of an ancient sailing ship. Tree-ring scientists at Columbia ...

Tropical tempests take encouragement from environment

1 hour ago

Mix some warm ocean water with atmospheric instability and you might have a recipe for a cyclone. Scientists at Pacific Northwest National Laboratory and the Atlanta Oceanographic and Meteorological Laboratory ...

User comments : 0