Space Station study seeks how plants sense 'up' and 'down'

Apr 30, 2014
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube MICRO study. Credit: NASA/Kim Shiflett

On Earth, we take for granted that a plant grows up and its roots grow down. In space, however, this seemingly predictable formula is upended. How do plants sense "up" and "down" where those relative positions don't exist?

The Biotube-MICRO investigation that recently arrived to the International Space Station aims to investigate, and what it finds could have big implications for long-duration human spaceflight.

The study was delivered to the April 20 aboard a Space Exploration Technologies (SpaceX) Dragon spacecraft. It's one of several science payloads on the SpaceX-3 mission, the company's third contracted commercial resupply flight to the orbiting laboratory.

"What we learn from this experiment will help us grow plants in space, because right now, roots grow in random directions due to the lack of gravity," explained Ralph Fritsche, a payload manager with the International Space Station Ground Processing and Research Project Office at NASA's Kennedy Space Center in Florida. "It will also provide fundamental understanding of plant biology that benefits us on Earth."

Biotube-MICRO will help scientists understand how gravity guides plants into growing correctly. Since starch grains in plant cells react to magnetic fields, the study uses extremely strong magnets to try to influence the direction of root growth. If the root curves away from the magnet, it's an indication that plants can use magnetic fields, rather than the downward pull of gravity, to determine which way to grow.

A comparison of Arabidopsis thaliana seedlings grown on Earth and in space, with a specific focus on the direction of root growth in the absence of gravity. Credit: Anna-Lisa Paul/Principal Investigator

The full name of the project is Biotube-Magnetophoretically Induced Curvature in Roots. Developed by the University of Louisiana, Lafayette, it contains three chambers, each of which carries eight cassettes holding 10 Brassica rapa seeds. Brassica rapa is a quick-growing plant also known as field mustard.

Aboard the space station, resident crew members will install the Biotube-MICRO investigation in a standard payload rack, turn it on, and complete a startup sequence.

The study itself is completely automated. A small amount of water will be injected into each seed cassette, prompting the seeds to germinate. Small cameras will record the plants' growth and send these images to scientists on Earth, so they can decide when to conclude the study. At that point, application of either formaldehyde or RNAlater will stop the growth and preserve the seedlings.

"We don't need a lot of growth. We'll have a seed the size of a BB, and a root maybe an inch long," Fritsche said.

The Biotube-MICRO payload will return to Earth when Dragon splashes down in the Pacific Ocean at the end of the SpaceX-3 mission. Scientists will examine the returned samples to help improve understanding of plant growth in space and on Earth.

Explore further: BRIC carries big science in small canisters

add to favorites email to friend print save as pdf

Related Stories

BRIC carries big science in small canisters

Apr 30, 2014

Four tiny canisters which arrived to the International Space Station April 20 are carrying scientific experiments that could lead to better prevention and treatment of antibiotic-resistant bacterial infections, ...

ESA's weightless plants fly on a Dragon

Apr 23, 2014

(Phys.org) —It is a race against time for ESA's Gravi-2 experiment following launch last Friday on the Dragon space ferry. Stowed in Dragon's cargo are lentil seeds that will be nurtured into life on the ...

Recommended for you

US-India to collaborate on Mars exploration

7 hours ago

The United States and India, fresh from sending their own respective spacecraft into Mars' orbit earlier this month, on Tuesday agreed to cooperate on future exploration of the Red Planet.

Swift mission observes mega flares from a mini star

7 hours ago

On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series ...

Sandblasting winds shift Mars' landscape

12 hours ago

High winds are a near-daily force on the surface of Mars, carving out a landscape of shifting dunes and posing a challenge to exploration, scientists said Tuesday.

PanSTARRS K1, the comet that keeps going

14 hours ago

Thank you K1 PanSTARRS for hanging in there! Some comets crumble and fade away. Others linger a few months and move on. But after looping across the night sky for more than a year, this one is nowhere near ...

User comments : 0