Some long non-coding RNAs are conventional after all

April 4, 2014

Not so long ago researchers thought that RNAs came in two types: coding RNAs that make proteins and non-coding RNAs that have structural roles. Then came the discovery of small RNAs that opened up whole new areas of research. Now researchers have come full circle and predicted that some long non-coding RNAs can give rise to small proteins that have biological functions. A recent study in The EMBO Journal describes how researchers have used ribosome profiling to identify several hundred long non-coding RNAs that may give rise to small peptides.

"We have identified hundreds of open reading frames in the long non-coding RNAs of humans and zebrafish that may give rise to functional proteins using ribosome profiling," says Antonio Giraldez, one of the lead authors of the study and a professor at Yale University School of Medicine in the United States.

Ribosome profiling allows scientists to measure how much RNA is translated into protein. The method allows direct quantification of the messenger RNA fragments protected by the ribosome after digestion with the enzyme nuclease. The nucleases destroy the bonds between the exposed nucleotides that make up RNA and which are not protected by the protein-making machinery of the ribosome. What is left behind is a measurable amount of RNA destined to produce protein.

The researchers were able to visualize translation and the movement of the ribosome every three nucleotides, which corresponds to the size of each codon on the RNA producing an amino acid. This was possible by combining the high resolution of ribosome profiling with a bioinformatic tool developed in the Giraldez laboratory called ORFScore.

"Crucial to our study was the parallel use of a second computational method that relies on a bioinformatic tool called micPDP," says Giraldez. "micPDP revealed that the RNAs identified by ribosome profiling correspond to peptides that have been conserved over the course of evolution. This strongly suggests that these genes encode proteins that have specific functions in these animals."

As a further validation of their method, the scientists went one step further and used mass spectrometry to detect and characterize almost 100 of the peptides coded by the RNAs.

Until recently, long non-coding RNAs were thought to be restricted to the more mundane but nonetheless important structural roles that are essential to support the function of the cell. "We think the main reason that these small functional peptides have been missed in earlier studies is due to the assumptions that have to be made when assigning functions to large numbers of genes," says EMBO Member Nikolaus Rajewsky, Professor at the Max-Delbrück-Center in Berlin, Germany, Director of the Berlin Institute for Medical Systems Biology and one of the lead authors whose team contributed the micPDP to identify conserved micropeptides. "Short open reading frames are so numerous that by design standard genome annotation methods have to filter out short open reading frames."

There are many short peptides in nature, for example neuropeptides or insulin, but unlike the small peptides arising from long non-coding RNAs they are produced as larger preproteins that need to be trimmed to their final size. The first reports of activities for the small peptides produced by long non-coding RNAs have already begun to emerge. Schier and colleagues recently reported in Science1 a small peptide that functions as a signal to promote cell motility in the early fish embryo. The aptly named Toddler protein arises from long non-coding RNAs and acts as an activator of a G protein coupled receptor, one of the essential signaling molecules in the cell. Earlier work showed that a long non-coding RNA produced by the tarsal-less/polished rice/mille-pattes gene encodes small peptides that control epithelial morphogenesis in Drosophila and the flour beetle Tribolium.

"Our identification of hundreds of translated small open reading frames significantly expands the set of micropeptide-encoding vertebrate genes providing an entry point to investigate their real life functions," says Giraldez.

"The peptide predictions reported in these studies are tantalizing, but this is just the first step. Things should get really interesting as the community explores the functions of the predicted peptides in vivo," says Stephen M. Cohen, Professor at the Institute of Molecular and Cell Biology in Singapore who is not an author of the paper. "I imagine that we'll be hearing a lot about this new peptide world in the years to come."

Explore further: Preventing the spread of repression

More information: Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation, Ariel A. Bazzini, Timothy G. Johnstone, Romain Christiano, Sebastian D. Mackowiak, Benedikt Obermayer, Elizabeth S. Fleming,Charles E. Vejnar, Miler T. Lee, Nikolaus Rajewsky, Tobias C. Walther and Antonio J. Giraldez, emboj.embopress.org/content/early/2014/04/04/embj.201488411

1 Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors (2014) Pauli et al. Science 14 February 2014: 343 DOI: 10.1126/science.1248636

Related Stories

Preventing the spread of repression

August 8, 2013

Scientists at the Friedrich Miescher Institute for Biomedical Research have identified a novel and unexpected regulatory activity of RNA at the edge of inactive chromosomal regions. In their publication in Nature Structural ...

Scientists shed some light on biological "dark matter"

January 20, 2014

Biologists have studied the functionality of a poorly understood category of genes, which produce long non-coding RNA molecules rather than proteins. Some of these genes have been conserved throughout evolution, and are present ...

Protein 'rescues' stuck cellular factories

March 19, 2014

Using a powerful data-crunching technique, Johns Hopkins researchers have sorted out how a protein keeps defective genetic material from gumming up the cellular works. The protein, Dom34, appears to "rescue" protein-making ...

New functions for 'junk' DNA?

March 31, 2014

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding DNA determines the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
not rated yet Apr 05, 2014
Important example of scientific hypothesis undermining previous false assumptions. Excellent work!
Mike_Massen
not rated yet Apr 05, 2014
Indeed, assumptions - especially those with no Provenance - Must be tested and re-evaluated.

Eg. Until about 4 years ago it was thought oil & water don't mix well but, they do, under the conditions of removing the dissolved gases from water - they then mix surprisingly well, this means new drug delivery systems, new approaches to managing lipid/water mixes with new properties.

The assumption re oil/water ignored the combinatorial complexity of other factors eg dissolved gases, obvious but missed, it was only because of the research of one Australian Scientists who wanted to know the details did the world change in that way - the leverage of such a simple concept might be substantive !

What other Assumptions are there where the details re Provenance and the obvious which has been missed may be that crucial ?

In my Philosophy;-

"The details Matter", because
"The truth hides well in the Details".

Relentless pursuit of the Provenance of Assumptions may well bring great dividends !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.