Evidence of water in meteorite revives debate over life on Mars

Feb 28, 2014 by Guy Webster
This scanning electron microscope image of a polished thin section of a meteorite from Mars shows tunnels and curved microtunnels. Credit: NASA

A team of scientists at NASA's Johnson Space Center in Houston and the Jet Propulsion Laboratory in Pasadena, Calif., has found evidence of past water movement throughout a Martian meteorite, reviving debate in the scientific community over life on Mars.

In 1996, a group of scientists at Johnson led by David McKay, Everett Gibson and Kathie Thomas-Keprta published an article in Science announcing the discovery of biogenic evidence in the Allan Hills 84001(ALH84001) . In this new study, Gibson and his colleagues focused on structures deep within a 30-pound (13.7-kilogram) Martian meteorite known as Yamato 000593 (Y000593). The team reports that newly discovered different structures and compositional features within the larger Yamato meteorite suggest biological processes might have been at work on Mars hundreds of millions of years ago.

The team's findings have been published in the February issue of the journal Astrobiology. The lead author, Lauren White, is based at the Jet Propulsion Laboratory. Co-authors are Gibson, Thomas-Keprta, Simon Clemett and McKay, all based at Johnson. McKay, who led the team that studied the ALH84001 meteorite, died a year ago.

"While robotic missions to Mars continue to shed light on the planet's history, the only samples from Mars available for study on Earth are Martian meteorites," said White. "On Earth, we can utilize multiple analytical techniques to take a more in-depth look into meteorites and shed light on the history of Mars. These samples offer clues to the past habitability of this planet. As more Martian meteorites are discovered, continued research focusing on these samples collectively will offer deeper insight into attributes which are indigenous to ancient Mars. Furthermore, as these meteorite studies are compared to present day robotic observations on Mars, the mysteries of the planet's seemingly wetter past will be revealed."

Analyses found that the rock was formed about 1.3 billion years ago from a lava flow on Mars. Around 12 million years ago, an impact occurred on Mars which ejected the meteorite from the surface of Mars. The meteorite traveled through space until it fell in Antarctica about 50,000 years ago.

Evidence of water in meteorite revives debate over life on Mars
This scanning electron microscope image shows speroidal features embedded in a layer of iddingsite, a mineral formed by action of water, in a meteorite that came from Mars. Credit: NASA

The rock was found on the Yamato Glacier in Antarctica by the Japanese Antarctic Research Expedition in 2000. The meteorite was classified as a nakhlite, a subgroup of Martian meteorites. Martian meteoritic material is distinguished from other meteorites and materials from Earth and the moon by the composition of the oxygen atoms within the silicate minerals and trapped Martian atmospheric gases.

The team found two distinctive sets of features associated with Martian-derived clay. They found tunnel and micro-tunnel structures that thread their way throughout Yamato 000593. The observed micro-tunnels display curved, undulating shapes consistent with bio-alteration textures observed in terrestrial basaltic glasses, previously reported by researchers who study interactions of bacteria with basaltic materials on Earth.

The second set of features consists of nanometer- to-micrometer-sized spherules that are sandwiched between layers within the rock and are distinct from carbonate and the underlying silicate layer. Similar spherical features have been previously seen in the Martian meteorite Nakhla that fell in 1911 in Egypt. Composition measurements of the Y000593 spherules show that they are significantly enriched in carbon compared to the nearby surrounding iddingsite layers.

A striking observation is that these two sets of features in Y000593, recovered from Antarctica after about 50,000 years residence time, are similar to features found in Nakhla, an observed fall collected shortly after landing.

The authors note that they cannot exclude the possibility that the carbon-rich regions in both sets of features may be the product of abiotic mechanisms: however, textural and compositional similarities to features in terrestrial samples, which have been interpreted as biogenic, imply the intriguing possibility that the Martian features were formed by biotic activity.

"The unique features displayed within the Martian meteorite Yamato 000593 are evidence of aqueous alterations as seen in the clay minerals and the presence of carbonaceous matter associated with the clay phases which show that Mars has been a very active body in its past," said Gibson. "The planet is revealing the presence of an active water reservoir that may also have a significant carbon component.

"The nature and distribution of Martian carbon is one of the major goals of the Mars Exploration Program. Since we have found indigenous carbon in several Mars meteorites, we cannot overstate the importance of having Martian samples available to study in earth-based laboratories. Furthermore, the small sizes of the carbonaceous features within the Yamato 000593 meteorite present major challenges to any analyses attempted by remote techniques on Mars," Gibson added.

"This is no smoking gun," said JPL's White. "We can never eliminate the possibility of contamination in any meteorite. But these features are nonetheless interesting and show that further studies of these meteorites should continue."

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

First meteorite linked to Martian crust

Jan 03, 2013

After extensive analyses by a team of scientists led by Carl Agee at the University of New Mexico, researchers have identified a new class of Martian meteorite that likely originated from the Mars's crust. ...

Moroccan desert meteorite delivers Martian secrets

Oct 11, 2012

(Phys.org)—A meteorite that landed in the Moroccan desert 14 months ago is providing more information about Mars, the planet where it originated. University of Alberta researcher Chris Herd helped in the ...

Martian rock from Sahara desert unlike others

Jan 03, 2013

Scientists are abuzz about a coal-colored rock from Mars that landed in the Sahara desert: A yearlong analysis revealed it's quite different from other Martian meteorites. Not only is it older than most, ...

Organic carbon from Mars, but not biological

May 24, 2012

(Phys.org) -- Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While these molecules ...

Research team solves Martian meteorite age puzzle

Jul 24, 2013

By directing energy beams at tiny crystals found in a Martian meteorite, a Western University-led team of geologists has proved that the most common group of meteorites from Mars is almost 4 billion years younger than many ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Sinister1812
5 / 5 (1) Mar 01, 2014
So? Water doesn't always mean life. Look at the conditions on Mars. And if there was water in the past, it's not there now. If it is, it's frozen solid.
cantdrive85
1 / 5 (2) Mar 02, 2014
All that evidence that which points to water as being the culprit can equally be claimed that electric discharge produced them. The micro-tunnels, spherules, olivine, etc...all can be explained by electric discharge.
Captain Stumpy
5 / 5 (1) Mar 02, 2014
All that evidence that which points to water as being the culprit can equally be claimed that electric discharge produced them. The micro-tunnels, spherules, olivine, etc...all can be explained by electric discharge.

@cd
then by all means, please explain them

HOWEVER, as you are claiming they can be explained
USE REPUTABLE SCIENTIFIC SITES for proof
as EU is PSEUDOSCIENCE

also, given that the above article is about ASTROPHYSICS
use REPUTABLE ASTROPHYSICS SITES to show proof
as IEEE is NOT reputable astrophysics and this has been PROVEN
TIME AND AGAIN
ON THIS SITE ALONE

IF you can explain it with legitimate science, there should be legitimate science sites that support your conjectures
therefore use them instead of pseudoscience for positive empirical data as posting a link to a PSEUDOSCIENCE SITE is just like using a picture of a leprechaun to validate the Higgs particle

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.