Scientists seek to corral asteroid for study

May 13, 2013 by Lisa M. Krieger

Scheming to rearrange the heavens, scientists are busy planning how to pluck, push and park a spinning asteroid between here and the moon. While most of us hope to dodge space rocks, NASA has unveiled an ambitious, $105 million plan to build a spaceship to drag one closer to Earth. It's the Space Age equivalent of bringing the mountain to Muhammad and a first step in our future voyage to Mars.

"Our goal is to go out there and rendezvous - then get it into the hands of the people who can understand it," said David Korsmeyer, director of the Engineering Directorate at Mountain View, Calif.'s NASA Ames Research Center, which will contribute to the project.

Asteroids command our respect because a big one could play us like a billiard ball. February's twofer - a little one rocked Russia and a bigger one was a near miss - only added to the anxiety.

But they're also valuable, and pursuing one could launch us into deeper space.

That's because we'll need a vehicle a whole lot better than a fuel-driven rocket. With an infusion of new NASA money, engineers hope to design a futuristic solar-electric vehicle that would make a slow, steady and sustainable trip to find an . It's the journey, not just the destination, that thrills scientists.

After finding a suitable space rock orbiting our way, the spaceship might push, tug or harpoon the asteroid. Or it might stuff the rock into a big bag, or perhaps lasso it in some 21st century version of a Roy Rogers rope trick.

"As a space-faring country it has been more than 40 years since we have been to deep space," out where asteroids lurk, said Stanford University aeronautics professor G. Scott Hubbard, who conceived the Mars Pathfinder mission and formerly directed NASA Ames.

"We need to regain our 'chops,' " he said. "It's a demonstration of space exploration technologies for the future."

The "Asteroid Retrieval Mission" is still under development in Washington, D.C., where it is a major new goal for an agency that has retired the shuttle fleet and grounded a moon-landing plan.

Suggested last year by the Keck Institute for Space Studies at the California Institute of Technology, the idea has found favor at the White House Office of Science and Technology Policy. In his sole space speech, President Barack Obama vowed we would land on an asteroid by 2025. There's a cooler reception in the budget-wrangling Congress.

Developing the technologies needed to bring home an asteroid will greatly boost costs, warned Stanford's Hubbard. The $105 million is just a down payment on a project that could cost billions of dollars.

"I would caution the developers to be very clear-minded and open-eyed about what the ultimate cost ... might be," he said.

In the summer, Ames and other NASA research centers will gather their scientists to work out the details.

At Ames, "we can provide tools that make the mission more successful," Korsmeyer said.

For instance, he said, Ames scientists could devise tools similar to their CheMin device aboard the Mars rover that analyzes the composition of Martian rocks. Ames could also build sensors to help find an asteroid.

Most asteroids live too far away to be useful when they're not crashing into, for example, Russia. And some are huge.

But petite ones - say, the size of a dump truck - might be practical to grab using unmanned spaceships, NASA says.

Asteroids are the rubble left from the formation of our solar system about 4.6 billion years ago and hold clues about our origins and, perhaps, valuable metals.

Although the main goal is not to protect the Earth from an errant , the technology developed "could prove useful in diverting a larger, rogue asteroid," said planetary scientist and former astronaut Tom Jones, an adviser to the asteroid-seeking B612 Foundation.

The hunt won't be easy: The perfect asteroid will be tough to find because it will be too small to reflect light.

Moreover, it doesn't want to be captured. NASA calls it "an uncooperative object" - moving at 17,000 mph, content in its own orbit, and spinning like a top. It may not even be solid, like granite, but just a tumbling bunch of rocky ice.

Then there's the challenge of intercepting it. Korsmeyer calls it "a multivariable math game." Envision catching a baseball while on a Ferris wheel.

Once captured, it would be slowly pushed or pulled, and nudged close to the moon.

There, remote-controlled ships would arrive to chip off chunks for study. Eventually, astronauts would visit it.

"It's not a trivial undertaking," Korsmeyer said. "You are lining up a whole set of moving balls to try to put one in the pocket."

Explore further: NASA considering capturing and placing asteroid into moon orbit


Related Stories

NASA's asteroid initiative benefits from rich history

April 12, 2013

NASA's FY2014 budget proposal includes a plan to robotically capture a small near-Earth asteroid and redirect it safely to a stable orbit in the Earth-moon system where astronauts can visit and explore it.

Asteroid threat has Congress' attention

April 15, 2013

As if you don't have enough to worry about, consider the subject of a hearing last week on Capitol Hill: asteroids that may be headed toward Earth. The good news: NASA is tracking most of the largest asteroids - the kind ...

NASA chief: Visiting an asteroid is all agency can afford

April 24, 2013

A NASA plan to send astronauts to an asteroid was met with skepticism Wednesday when NASA Chief Charlie Bolden presented the idea to top space officials in Congress - though their doubts may not be enough to sink the program.

Recommended for you

Gravitational waves found, black-hole models led the way

February 11, 2016

Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. The advanced Laser Interferometric Gravitational-wave ...

Hubble image: The sleeping giant

February 11, 2016

The placid appearance of NGC 4889 can fool the unsuspecting observer. But the elliptical galaxy, pictured in this new image from the NASA/ESA Hubble Space Telescope, harbours a dark secret. At its heart lurks one of the most ...

The 'glitching' of the Vela pulsar

February 9, 2016

(—A team of Australian astronomers has conducted an intensive observation of a curious young pulsar to investigate changes in its rotation frequency known as 'glitching'. Located about 910 light years from the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.