Scientists seek to corral asteroid for study

May 13, 2013 by Lisa M. Krieger

Scheming to rearrange the heavens, scientists are busy planning how to pluck, push and park a spinning asteroid between here and the moon. While most of us hope to dodge space rocks, NASA has unveiled an ambitious, $105 million plan to build a spaceship to drag one closer to Earth. It's the Space Age equivalent of bringing the mountain to Muhammad and a first step in our future voyage to Mars.

"Our goal is to go out there and rendezvous - then get it into the hands of the people who can understand it," said David Korsmeyer, director of the Engineering Directorate at Mountain View, Calif.'s NASA Ames Research Center, which will contribute to the project.

Asteroids command our respect because a big one could play us like a billiard ball. February's twofer - a little one rocked Russia and a bigger one was a near miss - only added to the anxiety.

But they're also valuable, and pursuing one could launch us into deeper space.

That's because we'll need a vehicle a whole lot better than a fuel-driven rocket. With an infusion of new NASA money, engineers hope to design a futuristic solar-electric vehicle that would make a slow, steady and sustainable trip to find an . It's the journey, not just the destination, that thrills scientists.

After finding a suitable space rock orbiting our way, the spaceship might push, tug or harpoon the asteroid. Or it might stuff the rock into a big bag, or perhaps lasso it in some 21st century version of a Roy Rogers rope trick.

"As a space-faring country it has been more than 40 years since we have been to deep space," out where asteroids lurk, said Stanford University aeronautics professor G. Scott Hubbard, who conceived the Mars Pathfinder mission and formerly directed NASA Ames.

"We need to regain our 'chops,' " he said. "It's a demonstration of space exploration technologies for the future."

The "Asteroid Retrieval Mission" is still under development in Washington, D.C., where it is a major new goal for an agency that has retired the shuttle fleet and grounded a moon-landing plan.

Suggested last year by the Keck Institute for Space Studies at the California Institute of Technology, the idea has found favor at the White House Office of Science and Technology Policy. In his sole space speech, President Barack Obama vowed we would land on an asteroid by 2025. There's a cooler reception in the budget-wrangling Congress.

Developing the technologies needed to bring home an asteroid will greatly boost costs, warned Stanford's Hubbard. The $105 million is just a down payment on a project that could cost billions of dollars.

"I would caution the developers to be very clear-minded and open-eyed about what the ultimate cost ... might be," he said.

In the summer, Ames and other NASA research centers will gather their scientists to work out the details.

At Ames, "we can provide tools that make the mission more successful," Korsmeyer said.

For instance, he said, Ames scientists could devise tools similar to their CheMin device aboard the Mars rover that analyzes the composition of Martian rocks. Ames could also build sensors to help find an asteroid.

Most asteroids live too far away to be useful when they're not crashing into, for example, Russia. And some are huge.

But petite ones - say, the size of a dump truck - might be practical to grab using unmanned spaceships, NASA says.

Asteroids are the rubble left from the formation of our solar system about 4.6 billion years ago and hold clues about our origins and, perhaps, valuable metals.

Although the main goal is not to protect the Earth from an errant , the technology developed "could prove useful in diverting a larger, rogue asteroid," said planetary scientist and former astronaut Tom Jones, an adviser to the asteroid-seeking B612 Foundation.

The hunt won't be easy: The perfect asteroid will be tough to find because it will be too small to reflect light.

Moreover, it doesn't want to be captured. NASA calls it "an uncooperative object" - moving at 17,000 mph, content in its own orbit, and spinning like a top. It may not even be solid, like granite, but just a tumbling bunch of rocky ice.

Then there's the challenge of intercepting it. Korsmeyer calls it "a multivariable math game." Envision catching a baseball while on a Ferris wheel.

Once captured, it would be slowly pushed or pulled, and nudged close to the moon.

There, remote-controlled ships would arrive to chip off chunks for study. Eventually, astronauts would visit it.

"It's not a trivial undertaking," Korsmeyer said. "You are lining up a whole set of moving balls to try to put one in the pocket."

Explore further: NASA chief: Visiting an asteroid is all agency can afford

4.5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Asteroid threat has Congress' attention

Apr 15, 2013

As if you don't have enough to worry about, consider the subject of a hearing last week on Capitol Hill: asteroids that may be headed toward Earth. The good news: NASA is tracking most of the largest asteroids ...

NASA's asteroid initiative benefits from rich history

Apr 12, 2013

NASA's FY2014 budget proposal includes a plan to robotically capture a small near-Earth asteroid and redirect it safely to a stable orbit in the Earth-moon system where astronauts can visit and explore it. ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

6 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

6 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

7 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...