Big weather on hot Jupiters

May 27, 2013 by Dr. Tony Phillips
This exoplanet weather map shows temperatures on a hot Jupiter known as "HAT-P-2b".

Among the hundreds of new planets discovered by NASA's Kepler spacecraft are a class of exotic worlds known as "hot Jupiters." Unlike the giant planets of our own solar system, which remain at a safe distance from the sun, these worlds are reckless visitors to their parent stars. They speed around in orbits a fraction the size of Mercury's, blasted on just one-side by starlight hundreds of times more intense than the gentle heating experienced by Jupiter here at home."

Meteorologists watching this video are probably wondering what kind of weather a world like that might have. The short answer is "big."

Heather Knutson of Caltech made the first of a hot Jupiter in 2007.

"It's not as simple as taking a picture and—voila!—we see the weather," says Knutson. These planets are hundreds of light years from Earth and they are nearly overwhelmed by the glare of their parent stars. "Even to see the planet as a single pixel next to the star would be a huge accomplishment."

Instead, Knutson and colleagues use a trick dreamed up by Nick Cowan of Northwestern University. The key, she explains, is that "most hot Jupiters are tidally locked to their stars. This means they have a permanent dayside and a permanent night side. As we watch them from our vantage point on Earth, the planets exhibit phases—e.g., crescent, gibbous and full. By measuring the infrared brightness of the planet as a function of its phase, we can make a rudimentary map of temperature vs. longitude."

NASA's is the only infrared observatory with the sensitivity to do this work. Since Knutson kick-started the research in 2007, nearly a dozen hot Jupiters have been mapped by astronomers using Spitzer.

The most recent study, led by Nikole Lewis, a NASA Sagan Fellow working at MIT, shows a named HAT-P-2b. "We can see as high as 2400 K," says Lewis, "while the nightside drops below 1200K. Even at night," she marvels, "this planet is ten times hotter than Jupiter."

These exoplanet maps may seem crude compared to what we're accustomed to on Earth, but they are a fantastic accomplishment considering that the planets are trillions of miles away.

The maps show huge day-night temperature differences typically exceeding 1000 degrees. Researchers believe these thermal gradients drive ferocious winds blowing thousands of miles per hour.

Without regular pictures, researchers can't say what this kind of windy weather looks like. Nevertheless, Knutson is willing to speculate using climate models of Jupiter as a guide.

"Weather on hot Jupiters," she predicts, "is really big."

Over the years, planetary scientists have developed computer models to reproduce the storms and cloud belts in Jupiter's atmosphere. If you take those models and turn up the heat, and slow down the rotation to match the tidally-locked spin of a hot Jupiter, weather patterns become super-sized. For instance, on a hot Jupiter the Great Red Spot might grow as large as a quarter the size of the planet and manifest itself in both the northern and southern hemispheres.

"Just imagine what that would look like—a pair of giant eyes staring out into space!" says Lewis.

Meanwhile, Jupiter's famous belts would widen so much that only two or three would fit across the planet's girth.

Ordinary clouds of water and methane couldn't form in such a hot environment. Instead, Knutson speculates that hot Jupiters might have clouds made of silicate—that is, "rock clouds."

"Silicates are predicted to condense in such an environment," she says. "We're already getting some hints that clouds might be common on these planets, but we don't yet know if they're made of rock."

For now just one thing is certain: The meteorology of is out of this world.

Explore further: Can astronomy explain the biblical Star of Bethlehem?

Related Stories

Spitzer telescope puts planets in a petri dish

May 06, 2013

(Phys.org) —Our galaxy is teeming with a wild variety of planets. In addition to our solar system's eight near-and-dear planets, there are more than 800 so-called exoplanets known to circle stars beyond ...

Highly inflated Jupiters

Dec 10, 2012

There are currently 851 confirmed extra-solar planets. Of these, 289 were detected because their orbits (as seen from Earth) take them across the face of their host star, dimming the star's light in a transit ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.