Photosynthesis: The last link in the chain

Jan 04, 2013

For almost 30 years, researchers have sought to identify a particular enzyme that is involved in regulating electron transport during photosynthesis. A team at Ludwig-Maximilians-Universität (LMU) in Munich has now found the missing link, which turns out to be an old acquaintance.

Photosynthesis sustains by providing energy-rich compounds and the that higher organisms depend on. The process is powered by sunlight, which is captured by "biochemical " called photosystems that are found in plants, algae and certain types of bacteria. Plants have two photosystems, PSI and PSII. Each consists of a pigment-protein complex that uses solar energy to raise electrons to a higher energy level. These are then passed along a chain of electron acceptors, and the energy released is employed for synthesis of ATP, the "coinage" used for all energy transactions in cells.

Electron transport can proceed along several different routes. So-called linear electron transport requires the participation of both PSI and PSII, and delivers the electrons to a small molecule called NADP, forming NADPH. Cyclic on the other hand - which can take two alternative paths - involves only PSI, and is used solely for the production of ATP. Electrons that follow the major route are passed via an acceptor called plastoquinone to the b6f complex and from there back to PSI, thus completing the cycle.

"The identity of the carrier that donates electrons to plastoquinone, and thus makes the process of cyclic electron flow possible, has long been a subject of controversy," says LMU biologist Professor Dario Leister, who, together with other members of his group, has now succeeded in identifying the crucial missing link in the process.

The crossroads that closes the circuit

Plants can switch between linear and cyclic modes of electron transport in order to maintain the appropriate balance between ATP and NADPH, both of which are required for synthesis of sugars from CO2. This implies that the allocation of electrons between the photosystems can be regulated. An electron transporter called ferredoxin, which receives electrons directly from PSI, acts as the junction that connects the two. "It was therefore proposed, more than 30 years ago, that a so-called ferredoxin-plastoquinone reductase (FQR) must exist, which ensures that can be re-injected into the electron transport chain, and thus allows for cyclic electron transport," Leister explains, "but despite intensive searches, no such enzyme had been found."

In 2008, Leister's team identified a protein they called PGRL1, and showed that it was able to interact with PSI and with other factors known to participate in cyclic electron transport. In their latest study, they have been able to characterize the precise biochemical function of PGRL1. It turns out that the protein is the long-sought FQR that plays a central role in the regulation of cyclic electron flow. "In the long term, this finding may help us to improve photosynthetic performance by replacing or modifying specific components of the chain," Leister points out.

Pivotal regulators such as PGRL1 could possibly be tuned in a targeted fashion so as to enhance the efficiency of photosynthesis and thus increase yields in crop plants grown under controlled conditions. Furthermore, a complete understanding of the structure and regulation of the photosystems is a prerequisite for the development of methods that would allow one to optimize the process of for various applications – such as raising crop yields, designing new types of solar cells or generating molecular hydrogen for use as an environmentally friendly energy source.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: Molecular Cell, 3. January 2013, www.cell.com/molecular-cell/ab… -2765%2812%2900989-6

Related Stories

Plugging in Molecular Wires

Feb 11, 2009

(PhysOrg.com) -- Plants, algae, and cyanobacteria (blue-green algae) are masters of everything to do with solar energy because they are able to almost completely transform captured sunlight into chemical energy. This is in ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Biological electron transfer captured in real time

Mar 03, 2008

Two research teams led by Dr. Michael Verkhovsky and Prof. Mårten Wikström of the Institute of Biotechnology of the University of Helsinki have for the first time succeeded in monitoring electron transfer by Complex I in ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
1.4 / 5 (11) Jan 04, 2013
...as this site continues its Quixotic quest to save dear damsels from invisible plant fertilizer by assembling burnt old Antarctic temperature records into fiery talismans, photosynthesis be away with thee!

-=NikFromNYC=-, Ph.D. in carbon chemistry (Columbia/Harvard)
Torbjorn_Larsson_OM
5 / 5 (3) Jan 05, 2013
Climate science isn't quixotic as science, in fact AGW is the only remaining theory so they obviously can understand nature very well.
irjsiq
1.5 / 5 (8) Jan 05, 2013
Columbia/Harvard . . . Are they based on Political Correctness? aka. You'll 'flunk this course, if you ever say anything anti conventional, and question widely accepted doctrine!
Stay within the lines or get out!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.