Silicon nanophotonics: Using light signals to transmit data

Dec 10, 2012 by John Galvez
An IBM 90nm Silicon Integrated Nanophotonics technology is capable of integrating a photodetector (red feature on the left side of the cube) and modulator (blue feature on the right side) fabricated side-by-side with silicon transistors ( red sparks on the far right). Silicon Nanophotonics circuits and silicon transistors are interconnected with nine levels of yellow metal wires.

(Phys.org)—IBM announced today a major advance in the ability to use light instead of electrical signals to transmit information for future computing. The breakthrough technology – called "silicon nanophotonics" – allows the integration of different optical components side-by-side with electrical circuits on a single silicon chip using, for the first time, sub-100nm semiconductor technology.

Silicon nanophotonics takes advantage of pulses of light for communication and provides a super highway for large volumes of data to move at rapid speeds between in servers, large datacenters, and supercomputers, thus alleviating the limitations of congested data traffic and high-cost traditional interconnects.

"This technology breakthrough is a result of more than a decade of pioneering research at IBM," said Dr. John E. Kelly, Senior Vice President and Director of IBM Research. "This allows us to move silicon nanophotonics technology into a real-world manufacturing environment that will have impact across a range of applications."

Information super highway showing blue optical waveguides transmitting high-speed optical signals and yellow copper wires carrying high-speed electrical signals. IBM Silicon Nanophotonics technology is capable of integrating optical and electrical circuits side-by-side on the same chip.

The amount of data being created and transmitted over enterprise networks continues to grow due to an explosion of new applications and services. Silicon nanophotonics, now primed for commercial development, can enable the industry to keep pace with increasing demands in and computing power.

Businesses are entering a new era of computing that requires systems to process and analyze, in real-time, huge volumes of information known as Big Data. Silicon nanophotonics technology provides answers to Big Data challenges by seamlessly connecting various parts of large systems, whether few centimeters or few kilometers apart from each other, and move terabytes of data via pulses of light through optical fibers.

Building on its initial proof of concept in 2010, IBM has solved the key challenges of transferring the silicon nanophotonics technology into the commercial foundry. By adding a few processing modules into a high-performance 90nm CMOS fabrication line, a variety of silicon nanophotonics components such as wavelength division multiplexers (WDM), modulators, and detectors are integrated side-by-side with a CMOS electrical circuitry. As a result, single-chip optical communications transceivers can be manufactured in a conventional semiconductor foundry, providing significant cost reduction over traditional approaches.

IBM's CMOS technology demonstrates transceivers to exceed the data rate of 25Gbps per channel. In addition, the technology is capable of feeding a number of parallel optical data streams into a single fiber by utilizing compact on-chip wavelength-division multiplexing devices. The ability to multiplex large data streams at high data rates will allow future scaling of optical communications capable of delivering terabytes of data between distant parts of computer systems.

Further details will be presented this week by Dr. Solomon Assefa at the IEEE International Electron Devices Meeting (IEDM) in the talk titled, "A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications." Additional papers being presented by IBM at IEDM can be seen here.

Explore further: Yellowstone's thermal springs—their colors unveiled

Related Stories

HELIOS makes silicon breakthrough

Mar 30, 2012

Researchers in Europe have succeeded in presenting an integrated tuneable transmitter on silicon - the first time this has ever happened. This results are an outcome of the HELIOS ('Photonics electronics functional ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

El_Nose
5 / 5 (2) Dec 10, 2012
http://www.extrem...nic-chip

is a much more detailed article and expresses just how awesome this technology is. It is not Gbps but really Tbps. This is just the cusp of this technology taking off.
Argiod
1.7 / 5 (3) Dec 10, 2012
I prefer the old days when you could trace a circuit and see exactly what it does. With technology that is so small you can't even see it without special, expensive equipment, there's no telling what they incorporate into products. More ways to keep track of everybody... These days we can't even tell if they can watch and listen from circuits built into our phones, computers, and even possibly in our clothes...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.