‘Seeing’ cosmic rays in space

Apr 20, 2012 By Nancy Atkinson
The Apollo Light Flash Moving Emulsion Detector (ALFMED), an experiment to record of incidents cosmic ray particles hitting astronauts. Credit: NASA

Astronauts have long reported the experience of seeing flashes while they are in space, even when their eyes are closed. Neil Armstrong and Buzz Aldrin both reported these flashes during the Apollo 11 mission, and similar reports during the Apollo 12 and 13 missions led to subsequent Apollo missions including experiments specifically looking at this strange phenomenon. These experiments involved blindfolding crewmembers and recording their comments during designated observation sessions, and later missions had a special device, the Apollo Light Flash Moving Emulsion Detector (ALFMED), which was worn by the astronauts during dark periods to record of incidents of cosmic ray hits.

It was determined the astronauts were ‘seeing’ zipping through their eyeballs. Cosmic rays are high-energy charged subatomic particles whose origins are not yet known. Fortunately, cosmic rays passing through Earth are usually absorbed by our atmosphere. But astronauts outside the atmosphere can find themselves “seeing things that aren’t there,” wrote current International Space Station astronaut Don Pettit, who told about his experience of seeing these flashes on his blog: “In space I see things that are not there. Flashes in my eyes, like luminous dancing fairies, give a subtle display of light that is easy to overlook when I’m consumed by normal tasks. But in the dark confines of my sleep station, with the droopy eyelids of pending sleep, I see the flashing fairies. As I drift off, I wonder how many can dance on the head of an orbital pin.”

In a report on the Apollo experiment, astronauts described the types of flashes they saw in three ways: the ‘spot’, the ‘streak’, and the ‘cloud’; and all but one described the flashes as ‘white’ or ‘colorless.’ One crewmember, Apollo 15 Commander David Scott, described one flash as “blue with a white cast, like a blue diamond.”

Pettit described the physics/biology of what takes place: “When a cosmic ray happens to pass through the retina it causes the rods and cones to fire, and you perceive a flash of light that is really not there. The triggered cells are localized around the spot where the cosmic ray passes, so the flash has some structure. A perpendicular ray appears as a fuzzy dot. A ray at an angle appears as a segmented line. Sometimes the tracks have side branches, giving the impression of an electric spark. The retina functions as a miniature Wilson cloud chamber where the recording of a cosmic ray is displayed by a trail left in its wake.”

‘Seeing’ cosmic rays in space
A cosmic ray hit on a camera appears as a segmented line in the image. Credit: NASA/Don Pettit..

Pettit said that the rate or frequency at which these flashes are seen varies with orbital position.

“There is a radiation hot spot in orbit, a place where the flux of cosmic rays is 10 to 100 times greater than the rest of the orbital path. Situated southeast of Argentina, this region (called the South Atlantic Anomaly) extends about halfway across the Atlantic Ocean. As we pass through this region, eye flashes will increase from one or two every 10 minutes to several per minute.

The Phantom Torso experiment, AKA, Fred. Credit: NASA

During the , saw these flashes after their eyes had become dark-adapted. When it was dark, they reported a flash every 2.9 minutes on average. Only one Apollo crewmember involved in the experiments did not report seeing the phenomenon, Apollo 16′s Command Module Pilot Ken Mattingly, who stated that he had poor night vision.

These cosmic rays don’t just hit people, but things in space, too, and sometimes cause problems. Pettit wrote: “Free from the protection offered by the atmosphere, cosmic rays bombard us within Space Station, penetrating the hull almost as if it was not there. They zap everything inside, causing such mischief as locking up our laptop computers and knocking pixels out of whack in our cameras. The computers recover with a reboot; the cameras suffer permanent damage. After about a year, the images they produce look like they are covered with electronic snow. Cosmic rays contribute most of the radiation dose received by Space Station crews. We have defined lifetime limits, after which you fly a desk for the rest of your career. No one has reached that dose level yet.”

There are experiments on board the ISS to monitor how much radiation the crew is receiving. One experiment is the Phantom Torso, a mummy-looking mock-up of the human body which determines the distribution of radiation doses inside the human body at various tissues and organs.

There’s also the Alpha Magnetic Spectrometer experiment, a particle physics experiment module that is mounted on the ISS. It is designed to search for various types of unusual matter by measuring cosmic rays, and hopefully will also tell us more about the origins of both those crazy flashes seen in space, and also the origins of the Universe.

A tall order!

Explore further: Rosetta's comet: In the shadow of the coma

Related Stories

Can solar flares hurt astronauts?

Jan 24, 2012

Solar flares, coronal mass ejections, high-energy photons, cosmic rays… space is full of various forms of radiation that a human wouldn’t want to be exposed to for very long. Energized particles ...

Physicists scrutinize the universe with a novel camera

Nov 07, 2011

(PhysOrg.com) -- For the first time, a telescope has been equipped with a camera based on a new technology that uses semiconductors. This instrument will observe the flashes of light that are produced by gamma ...

Neutrinos put cosmic ray theory on ice

Apr 20, 2012

(Phys.org) -- A telescope buried beneath the South Pole has failed to find any neutrinos accompanying exploding fireballs in space, undermining a leading theory of how cosmic rays are born.

AMS is ready to discover the particle universe

May 20, 2011

(PhysOrg.com) -- The largest and most complex scientific instrument yet to be fitted to the International Space Station was installed today. Taken into space by the Space Shuttle, the Alpha Magnetic Spectrometer ...

Recommended for you

Rosetta's comet: In the shadow of the coma

5 hours ago

This NAVCAM mosaic comprises four individual images taken on 20 November from a distance of 30.8 km from the centre of Comet 67P/C-G. The image resolution is 2.6 m/pixel, so each original 1024 x 1024 pixel ...

DNA survives critical entry into Earth's atmosphere

Nov 26, 2014

The genetic material DNA can survive a flight through space and re-entry into the earth's atmosphere—and still pass on genetic information. A team of scientists from UZH obtained these astonishing results ...

Team develops cognitive test battery for spaceflight

Nov 26, 2014

Space is one of the most demanding and unforgiving environments. Human exploration of space requires astronauts to maintain consistently high levels of cognitive performance to ensure mission safety and success, and prevent ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Au-Pu
1 / 5 (1) Apr 21, 2012
Why do we not research "The South Atlantic Anomaly"?
It just might point us into areas of great interest with respect to the origins of cosmic rays.
djxatlanta
not rated yet Apr 22, 2012
The magnetic fields within the SAA interact with cosmic rays, but the SAA has no part in their creation -- cosmic rays unquestionably have cosmic origins. ;-)

On a side note, I occasionally notice cosmic ray flashes in my eyes here on Earth when I'm hyper-alert, especially if I'm in the process of blinking or my eyes are already closed -- perhaps about once every few weeks.
Terriva
not rated yet Apr 22, 2012
These flashes can bee seen around nuclear reactors and/or inside of accelerated proton facilities as well.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.