How mountain ranges get their shape

Feb 14, 2012 By Simone Ulmer
How mountain ranges get their shape
In the center of the picture the Allalinhorn with branches of the Feengletscher. Glaciers contribute significantly to shaping the relief of mountain ranges. Credit: Bild: Peter Rüegg / ETH Zürich

(PhysOrg.com) -- Tectonic, climate and the topography of the mountain ranges interact through a complex system of interactions and feedbacks. The nature and strength of these links are examined on the basis of data collection of 69 mountain ranges over the five continents.

Continental and oceanic crusts are "floating" on earth’s mantle. When two continental plates collide to each other, they shorten and thicken. Since continental crust has a lower density than mantle, it raises above the surrounding and form a mountain range. (rain, glaciers, wind, temperature variability etc.), coupled with the rate of crustal thickening are crucial to determine the erosion rate of the mountain range, as well as its overall shape.

Interaction of tectonic and ice

The nature of these interactions and feedbacks is examined by an international team lead by Jean-Daniel Champagnac (Ambizione Fellow) at the geological Institute of the ETH Zürich. This team recently published a study that constrain the strength of these interactions on the basis of measured tectonic, climatic and topographic values of different (69) mountain ranges widely distributed on the Earth surface. This study ran over six year in parallel to the main projects of the researchers involved. The goal was to examine the plausible laws of mountain building by data collection and statistical analyses.

For all the mountain ranges considered, the scientists determined specific quantitative variables. The climate was considered using the latitude (as a proxy for mean temperature and sun insolation), together with mean annual precipitation. The tectonic variable was defined by the shortening rate across each range, determined by GPS. As measures of the topography, the scientists used the averaged and maximum elevation above a base level previously defined, as well as relief calculated over different scale.

Latitude takes considerable impact

The statistical analyses confirm that the shape of result on the interaction between tectonics and climate. “That is trivial, but this is the first time that this is documented a global scale from natural data”, says Champagnac. Surprisingly, the importance of tectonic processes seems to be less important than so far assumed. Tectonic shortening is essential to thicken the crust, but climate exerts a stronger influence to shape the , according to this study. The relief is not sensitive to the average amount of precipitation, but to a combination of crustal shortening and latitude, where glaciations are more likely: small scale relief directly result on glacial imprint, whereas large scale relief result on crustal shortening.

The Alps are in a special situation, fully glaciated during glacial cycles, and almost fully deglaciated during the interglacial times: this produces very efficient glacial erosion and permanent reshaping of the landscape, by switching between glacial and fluvial erosion, says Champagnac.

Now the question arises whether tectonic processes were up to now overestimated.

Explore further: Lava creeps toward road on Hawaii's Big Island

More information: Champagnac, J. - D., et al: Tectonics, Climate, and Mountain Topography, J. Geophys. Res. (2012), doi:10.1029/2011JB008348 , in press.

add to favorites email to friend print save as pdf

Related Stories

The Atlantic 'resting' -- for now

May 23, 2011

Geophysicists have simulated when the continents around the Atlantic develop active continental margins with earthquakes and volcanoes. According to the model, ‘real’ fully active subduction zones ...

Impact of rainfall reaches to roots of mountains

Apr 20, 2006

The erosion caused by rainfall directly affects the movement of continental plates beneath mountain ranges, says a University of Toronto geophysicist — the first time science has raised the possibility that human-induced ...

Earth's crust melts easier than previously thought

Mar 18, 2009

A University of Missouri study published in Nature this week has found that the Earth's crust melts easier than previously thought. In the study, researchers measured how well rocks conduct heat at differ ...

Recommended for you

Icelandic volcano sits on massive magma hot spot

Oct 24, 2014

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and ...

NASA sees Tropical Storm Ana still vigorous

Oct 24, 2014

NASA's TRMM satellite saw that Tropical Storm Ana was still generating moderate rainfall is it pulled away from Hawaii. The next day, NASA's Aqua satellite saw that wind shear was having an effect on the ...

User comments : 0