Mn-doped ZnS is unsuitable to act as a dilute magnetic semiconductor

Feb 20, 2012
This shows (a) Room temperature ESR spectra of ZnS:Mn; and (b) Low temperature ESR spectra of ZnS:Mn (20%). Credit: ©Science China Press

Dilute magnetic semiconductors (DMS) have recently been a major focus of magnetic semiconductor research. A laboratory from the University of Science and Technology of China explored the feasibility of doping manganese (Mn) into zinc sulfide (ZnS) to obtain magnetic semiconductors.

Hideo Ohno and his group at the Tohoku University, Japan, were the first to measure in transition metal-doped semiconductors such as arsenide and doped with Mn. Ever since, researchers have attempted to obtain semiconductor hosts doped with different that exhibit ferromagnetic properties.

A team of researchers from Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, discovered that Mn-doped ZnS (ZnS:Mn) shows paramagnetic behavior and is not suitable for use as a DMS. Their work entitled "Structure Characterization, Magnetic and Properties of Mn-Doped ZnS " was published in SCIENCE CHINA Physics, Mechanics & Astronomy, 2012, Vol 55(2) .

Electron spin resonance (ESR) spectra (Figure 1a) of nanocrystalline ZnS:Mn show that at lower concentrations of Mn, a typical sextet centered at a g-value of 2 is associated with the allowed (Δms=±1, ΔmI=0) magnetic dipole transitions between the hyperfine-split Zeeman levels of the 6S5/2 ground state of the Mn2+ 3d electrons. The hyperfine structure arises from the interaction between the S=5/2 spin of the unpaired 3d electrons with I= 5/2 spin of the 55Mn nucleus. This indicates that Mn ions are distributed in the ZnS nanocrystalline lattice so that they are isolated from each other. At higher concentrations of Mn, the ions assemble together and are localized in the ZnS crystal lattice, decreasing the Mn-Mn atomic distance and increasing the dipole-dipole interaction. This causes the hyperfine structure to merge into one broad resonance. Further ESR experiments (Figure 1b) at low temperature also suggested that the sample was not ferromagnetic. All of the results indicated that ZnS:Mn is paramagnetic and not suitable for DMS.

Explore further: When things get glassy, molecules go fractal

More information: Zuo M, Tan S, Li G P, et al.Structure characterization,magnetic and photoluminescence properties of Mn doped ZnS nanocrystalline. SCIENCE CHINA Physics, Mechanics & Astronomy,2012,55: 219-223

Provided by Science in China Press

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers put a new spin on atomic musical chairs

Dec 02, 2009

Researchers from the National Institute of Standards and Technology and the Naval Research Laboratory have developed a new way to introduce magnetic impurities in a semiconductor crystal by prodding it with ...

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

How do liquid foams block sound?

20 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

When things get glassy, molecules go fractal

Apr 24, 2014

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Vacuum ultraviolet lamp of the future created in Japan

Apr 22, 2014

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

How do liquid foams block sound?

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.