Mn-doped ZnS is unsuitable to act as a dilute magnetic semiconductor

Feb 20, 2012
This shows (a) Room temperature ESR spectra of ZnS:Mn; and (b) Low temperature ESR spectra of ZnS:Mn (20%). Credit: ┬ęScience China Press

Dilute magnetic semiconductors (DMS) have recently been a major focus of magnetic semiconductor research. A laboratory from the University of Science and Technology of China explored the feasibility of doping manganese (Mn) into zinc sulfide (ZnS) to obtain magnetic semiconductors.

Hideo Ohno and his group at the Tohoku University, Japan, were the first to measure in transition metal-doped semiconductors such as arsenide and doped with Mn. Ever since, researchers have attempted to obtain semiconductor hosts doped with different that exhibit ferromagnetic properties.

A team of researchers from Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, discovered that Mn-doped ZnS (ZnS:Mn) shows paramagnetic behavior and is not suitable for use as a DMS. Their work entitled "Structure Characterization, Magnetic and Properties of Mn-Doped ZnS " was published in SCIENCE CHINA Physics, Mechanics & Astronomy, 2012, Vol 55(2) .

Electron spin resonance (ESR) spectra (Figure 1a) of nanocrystalline ZnS:Mn show that at lower concentrations of Mn, a typical sextet centered at a g-value of 2 is associated with the allowed (Δms=±1, ΔmI=0) magnetic dipole transitions between the hyperfine-split Zeeman levels of the 6S5/2 ground state of the Mn2+ 3d electrons. The hyperfine structure arises from the interaction between the S=5/2 spin of the unpaired 3d electrons with I= 5/2 spin of the 55Mn nucleus. This indicates that Mn ions are distributed in the ZnS nanocrystalline lattice so that they are isolated from each other. At higher concentrations of Mn, the ions assemble together and are localized in the ZnS crystal lattice, decreasing the Mn-Mn atomic distance and increasing the dipole-dipole interaction. This causes the hyperfine structure to merge into one broad resonance. Further ESR experiments (Figure 1b) at low temperature also suggested that the sample was not ferromagnetic. All of the results indicated that ZnS:Mn is paramagnetic and not suitable for DMS.

Explore further: New research predicts when, how materials will act

More information: Zuo M, Tan S, Li G P, et al.Structure characterization,magnetic and photoluminescence properties of Mn doped ZnS nanocrystalline. SCIENCE CHINA Physics, Mechanics & Astronomy,2012,55: 219-223

Provided by Science in China Press

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers put a new spin on atomic musical chairs

Dec 02, 2009

Researchers from the National Institute of Standards and Technology and the Naval Research Laboratory have developed a new way to introduce magnetic impurities in a semiconductor crystal by prodding it with ...

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.