Binary star system found by following gamma-ray signal

Jan 13, 2012 by Bob Yirka report

(PhysOrg.com) -- To find a binary star system, which is where two stars are in close proximity to one another, astronomers have traditionally relied on pure luck. They’d first start studying what would look like a single star, then look for a radiation signal that would provide them with more information. Such a system clearly isn’t the best approach to finding such binaries, so a group of researchers have turned the tables around so to speak, as they describe in their paper published in Science, and have found a binary by first finding its gamma-ray signal and then tracing it back to its origin.

Because only a few photons emitted from a system are able to make their way to our planet, what we are able to see is quite limited. Because of this, very few binary star systems have been found. To get around this problem, the researchers turned to the Large Area Telescope that is part of the Fermi Gamma-ray Space Telescope. Rather than being aimed at specific points in the sky, it scans whole swaths over periods of several hours. In so doing it of course, comes across all sorts of signals. The team studied the signals that were found during one such scan and then picked out some likely candidates, then traced the signals back to their origin. One such trace revealed, for the first time, a that had been found by a systematic approach: 1FGL J1018.6-5856.

What scientists know so far is that binary star systems come in two varieties; those that are microquasars, and those that are described as pulsating.

Microquasars are believed to come about due to black holes pulling another star closer, creating fast jets at the top and bottom. The other, a pulsating system comes about, it is thought, when at least one of the stars in the system is a pulsating neutron star. In such a system, the two stars circle each other.

The new binary discovered in the study is believed to be of the second type and emits a huge amount of gamma-rays (electromagnetic radiation of very high frequency) and lesser amounts of x-ray emissions, though the team believes that as the spin of the two stars slows, the relative amounts of radiation emitted by each will likely switch. The researchers also believe the pulsating nature of the was hidden by solar winds, which is why it wasn’t spotted until now.

Based on their results, the team is optimistic that the same approach they’ve used can be used to find other binary systems, which would add immeasurably to the body of science surrounding such systems.

Explore further: Bright like a diamond: lasers and compressed carbon recreate Jupiter's core

More information: Science 13 January 2012: Vol. 335 no. 6065 pp. 175-176 DOI: 10.1126/science.1215895

Related Stories

Binary white dwarf stars

May 04, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

How single stars lost their companions

Sep 15, 2011

(PhysOrg.com) -- Not all stars are loners. In our home galaxy, the Milky Way, about half of all stars have a companion and travel through space in a binary system. But explaining why some stars are in double ...

New planet discovered in Trinary star system

Jul 14, 2011

Until recently, astronomers were highly skeptical of whether or not planets should be possible in multiple star systems. It was expected that the constantly varying gravitational force would eventually tug ...

Recommended for you

Satellite galaxies put astronomers in a spin

20 hours ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

20 hours ago

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

Ultra-deep astrophoto of the Antenna Galaxies

20 hours ago

You might think the image above of the famous Antenna Galaxies was taken by a large ground-based or even a space telescope. Think again. Amateur astronomer Rolf Wahl Olsen from New Zealand compiled a total ...

User comments : 0