Plasmonic nanocrosses that heat up when illuminated can be used to kill cancer

December 23, 2011 By Lee Swee Heng
A reconstructed image of a gold nanocross surface. Credit: 2011 ACS

Plasmonic nanoparticles are extremely sensitive to light, and even the tiniest amount can cause these particles to heat up. Scientists are now trying to use plasmonic nanoparticles in cancer therapy whereby light energy is converted into heat in order to kill cancer cells. The advantage of such treatment is that it does not cause side effects that are common to chemotherapy. Mingyong Han at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed gold plasmonic nanocrosses that are particularly suited to eliminating cancer cells in cancer therapy. The team demonstrated the usefulness of these nanocrosses by using them to kill human lung cancer cells.

In general, have a particular frequency at which light excites electrons close to their surface. The collective movement of electrons, or resonance, in the metal is what converts the light energy into heat. The wavelength at which the resonance occurs is strongly dependent on the size and shape of the nanostructures.

For , the nanostructures should be effective no matter which direction they are illuminated from. Furthermore, the nanostructures should be efficient in absorbing near- to mid-infrared wavelengths because tissue is transparent to the light of these wavelengths.

Based on these requirements, the researchers decided to make gold nanocrosses (see image). In normal synthesis, however, gold would usually grow into the shape of the nanorods. To fabricate nanocrosses, the researchers added to the growth solution. The incorporation of small amounts of copper caused a twinning of the gold’s crystal structure, which in turn led to the growth of side arms from the crystal facets. “The unique cross-shaped gold structure enables multi-directional excitation to achieve a strong plasmonic resonance in the near- and mid-infrared region. This greatly lowers the laser power required for photothermal compared to nanorods,” says Han.

The researchers tested the performance of their gold nanocrosses by modifying their surfaces and binding them to human . When irradiated with near-infrared laser light of relatively modest powers of 4.2 W/cm2 for 30 seconds, all cancer cells were killed. The researchers are now planning to test the effectiveness of the gold nanocrosses on animal models in future experiments.

Other applications of the gold nanocrosses are also possible, including photothermal imaging, in which small amounts of light are converted into local heat, or the sterilization of surfaces. “In our current research, we are studying gold nanocrosses for the photothermal destruction of superbugs on biofilms,” says Han.

Explore further: Nanorods show benefits cancer treatment

More information: Research article in the Journal of the American Chemical Society

Related Stories

Nanorods show benefits cancer treatment

March 14, 2006

Researchers at the Georgia Institute of Technology and the University of California, San Francisco, have found an even more effective and safer way to detect and kill cancer cells. By changing the shapes of gold nanospheres ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.