Bats adjust their 'field-of-view'

September 13, 2011
bat

A new study reveals that the way fruit bats use biosonar to 'see' their surroundings is significantly more advanced than first thought. The study, published September 13 in the online, open access journal PLoS Biology, examines Egyptian fruit bats (Rousettus aegyptiacus), which use echolocation to orient inside their caves and to find fruit hidden in the branches of trees. Their high-frequency clicks form a sonar beam that spreads across a fan-shaped area, and the returning echoes allow them to locate and identify objects in that region. As these bats were considered to have little control over their vocalizations, scientists have puzzled over how they are able to navigate through complex environments.

The research team, led by Nachum Ulanovsky of the Weizmann Institute in Israel and Cynthia Moss of the University of Maryland, reports that these bats adapt to environmental complexity using two tactics. First, they alter the width of their sonar beam, similar to the way humans can adjust their spotlight of attention in order to spot, for example, a friend in a crowded room. Second, they modify the intensity of their emissions. "The work presented here reveals a new parameter under adaptive control in bat echolocation", says Ulanovsky.

Ulanovsky and his team trained five Egyptian fruit bats to locate and land on a mango-sized plastic sphere placed in various locations in a large, dark room equipped with an array of 20 microphones that recorded vocalizations. In one set of experiments, the researchers simulated an obstacle-filled forest by surrounding the sphere with two nets spread between four poles. To reach the , the bats flew through a narrow corridor whose width and orientation varied from trial to trial.

In the obstacle-filled environment, the bats covered three times as much area with each pair of clicks as they did when the obstacles weren't there. The angle separating each two beams was also wider and the volume of the clicks louder, and these differences became more pronounced as they drew further into the corridor and therefore closer to their obstacles. This larger 'field of view' allowed the bats to track the sphere and the poles simultaneously, and avoid collisions while landing.

"This is the first report, in any sensory system, of an active increase in field-of-view in response to changes in environmental complexity," says Ulanovsky. Although these new findings may be unique to Egyptian because of their rapid tongue movements, Ulanovsky explains that their results "suggest that active sensing of space by animals can be much more sophisticated than previously thought – and they call for a re-examination of current theories of spatial orientation and perception."

Explore further: Scientists discover exactly how bats fly

More information: Yovel Y, Falk B, Moss CF, Ulanovsky N (2011) Active Control of Acoustic Field-of-View in a Biosonar System. PLoS Biol 9(9): e1001150. doi:10.1371/journal.pbio.1001150

Related Stories

Scientists discover exactly how bats fly

February 7, 2006

University of Maryland scientists using infrared cameras and ultrasonic microphones have found exactly how a bat moves in response to sound.

Whispering bats are 100 times louder than previously thought

December 12, 2008

Annemarie Surlykke from the University of Southern Denmark is fascinated by echolocation. She really wants to know how it works. Surlykke equates the ultrasound cries that bats use for echolocation with the beam of light ...

'Zen' bats hit their target by not aiming at it (w/ Video)

February 4, 2010

New research conducted at the University of Maryland's bat lab shows Egyptian fruit bats find a target by NOT aiming their guiding sonar directly at it. Instead, they alternately point the sound beam to either side of the ...

Bats' echolocation recorded for human exploit

May 11, 2010

Bats' remarkable ability to 'see' in the dark uses the echoes from their own calls to decipher the shape of their dark surroundings. This process, known as echolocation, allows bats to perceive their surroundings in great ...

Why does rain keep bats grounded?

May 5, 2011

(PhysOrg.com) -- In a new study published in Biology Letters, researcher Christian Voigt from the Leibniz Institute for Zoo and Wildlife Research in Germany details their findings on Sowell’s short-tailed bats and the ...

Internal maps help fruit bats navigate

August 15, 2011

GPS technology can make our travels easier and more efficient. But for many animals, the ability to successfully navigate a landscape is not just a matter of convenience – their very survival depends on it.

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.