New magnetic imaging technique heralds advance in spintronics

Aug 11, 2011
The object and reference slit are illuminated by the coherent x-ray beam. (b) The hologram formed by the interference of the scattered x-rays from the object and reference slit is recorded on the CCD camera in the far field. (c) A linear differential filter, defined by the derivative of the slit direction, is multiplied by the hologram before performing a Fourier transform to retrieve the reconstructed image.

Impressive results from experiments at Diamond Light Source on magnetic lensless imaging by Fourier transform holography using extended references have been published today in Optics Express, the journal of the Optical Society of America.

Characterization of magnetic states on the submicron scale could lead to rapid advances in understanding and utilizing the properties of for spintronic devices.
 
The work was conducted on the I06 Nanoscience beamline by a team of researchers from Diamond, Exeter, Grenoble and Leeds. Using a narrow slit milled through an opaque gold mask as a holographic reference, magnetic contrast of the magnetic sample is obtained by x-ray magnetic circular dichroism.
 
Fourier transform holography (FTH) is a well established lensless technique for imaging the perpendicular component of magnetic domains and systems with in-plane magnetization. The novel technique, known as holography with extended reference by autocorrelation linear differential operator (HERALDO), promises to be more efficient than standard Fourier transform holography, where small holes are used to define the reference beam. Generating increased intensity through the extended reference reduces the counting time to record the far-field diffraction pattern. Manufacturing the slits is also less technologically demanding than the current procedure.
 
"We are very pleased with these results, which show clear images of magnetic domains in a Co/Pt multilayer thin film with perpendicular magnetic anisotropy. We achieved a spatial resolution of ∼30 nm, and this was only limited by the sample period. By adjusting the experimental setup we hope to achieve 15 nm in the near future," said Professor Gerrit van der Laan, Senior Research Scientist at Diamond

The ability of this technique to directly image magnetic configurations within an applied field could help to advance magnetic logic and race track memory devices, which require an understanding the propagation and controlled pinning of magnetic domain walls along nanowires.

Explore further: Precision gas sensor could fit on a chip

More information: Thomas A. Duckworth, et al., "Magnetic imaging by x-ray holography using extended references," Opt. Express 19, 16223-16228 (2011). www.opticsinfobase.org/oe/abst… m?URI=oe-19-17-16223

Provided by Diamond Light Source

5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

World's tiniest mirror

Aug 10, 2010

Just as the path of photons of light can be directed by a mirror, atoms possessing a magnetic moment can be controlled using a magnetic mirror. Research reported in the Journal of Applied Physics investigates the feasibility of usi ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.