Unique gene combinations control tropical maize response to day lengths

Jun 14, 2011

Tropical maize proves to be a valuable genetic resource, containing genetics not found in USA Corn Belt maize. Most tropical maize varieties respond to the long summer day lengths that occur in U.S. growing regions by flowering late. This delayed flowering response results in poor yields, effectively trapping the useful genes and hindering their incorporation into maize hybrids adapted to the most productive corn growing regions.

Scientists from the United States Department of Agriculture – Agricultural Research Service and North Carolina State University identified four regions of the maize genome that control much of the photoperiod response in maize. A diverse sample of maize lines bred in Mexico and Thailand were crossed into a standard Corn Belt maize line. Results of this study were reported in the May – June issue of Crop Science, the scientific journal published by the Crop Science Society of America.

For each key response region, the researchers compared the effects of moving the genes from a tropical variety into a Corn Belt variety. Even at a single genome region, the effects of tropical genes differed, depending on which tropical variety they were bred from. In the most extreme case, the scientists discovered that genes from tropical varieties did not have uniform effects on delayed flowering at the genome region. One of the tropical varieties carried genes that made plants flower earlier than the standard variety.

James Holland, who conducted the study, stated: "We were pleased to validate the effects of these four day length response gene regions that we had identified in previous independent studies. However, we were surprised to discover that some tropical lines carry early flowering genes at our most important day length genome region. Our results highlight the amazing variation that exists in both tropical and temperate ."

This research supports findings of other scientists about the genomic position of key day length response genes and reveals unexpected diversity in their effects on flowering. Ongoing research is focused on identifying the specific controlling day length response that exist in these regions.

Explore further: The origin of the language of life

More information: The full article is available for no charge for 30 days following the date of this summary. View the abstract at www.crops.org/publications/cs/articles/51/3/1036

Provided by American Society of Agronomy

not rated yet
add to favorites email to friend print save as pdf

Related Stories

If corn is biofuels king, tropical maize may be emperor

Oct 16, 2007

When University of Illinois crop scientist Fred Below began growing tropical maize, the form of corn grown in the tropics, he was looking for novel genes for the utilization of nitrogen fertilizer and was hoping to discover ...

Simulating kernel production influences maize model accuracy

Sep 21, 2007

Recently, researchers at Iowa State University discovered a way to increase the accuracy of a popular crop model. By zeroing in on early stages leading up to kernel formation, scientists believe they can help improve yield ...

Study targets disease resistance in corn

Jan 11, 2011

(PhysOrg.com) -- In a paper published online this week in Nature Genetics, North Carolina State University and U.S. Department of Agriculture crop scientists and plant pathologists sift through millions of gen ...

Ancient Mexican maize varieties

Jun 26, 2008

Maize was first domesticated in the highlands of Mexico about 10,000 years ago and is now one of the most important crop plants in the world. It is a member of the grass family, which also hosts the world's other major ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.