IBM creates first graphene based integrated circuit

Jun 10, 2011 by Bob Yirka report
Schematic illustration of a graphene mixer circuit. Image credit: Yu-Ming Lin/Science, 10.1126/science.1204428

(PhysOrg.com) -- Taking a giant step forward in the creation and production of graphene based integrated circuits, IBM has announced in Science, the fabrication of a graphene based integrated circuit on a single chip. The demonstration chip, known as a radio frequency "mixer" is capable of producing frequencies up to 10 GHz, and demonstrates that it is possible to overcome the adhesion problems that have stymied researchers efforts in creating graphene based IC's that can be used in analog applications such as cell phones or more likely military communications.

IBM and others had previously demonstrated that it was possible to create a graphene based transistor; this latest research takes that technology one step further by marrying the transistor and other electronics on a single chip to create a full-fledged integrated circuit.

The graphene circuits were started by growing a two or three layer graphene film on a which was then heated to 1400°C. The graphene IC was then fabricated by employing top gated, dual fingered graphene FET’s (field-effect ) which were then integrated with inductors. The active channels were made by spin-coating the wafer with a thin polymer and then applying a layer of hydrogen silsequioxane. The channels were then carved by e-beam lithography. Next, the excess graphene was removed with an oxygen plasma laser, and then the whole works was cleaned with acetone. The result is an integrated circuit that is less than 1mm2 in total size.

The chip produces output signals with mixed frequencies, hence its name, and while the prototype developed is not expected to be used in an actual device, future chips using the new technology are expected to be used in wireless communications. Since a major source of the funding for the research has been provided by the U.S. Defense Advanced Research Projects Agency (DARPA) the first uses of such a in an application is likely to be for secretive communications between airborne military pilots; the ultra high frequencies generated make it ideal for such secure applications.

Getting the graphene to adhere to other electronic components was by all accounts the most difficult part of the whole process, and apparently took the team, led by Phaedon Avouris, all of a year to accomplish; but it was clearly well worth the effort as research teams the world over continue to search for an eventual replacement to silicon in integrated chips, which by most accounts will hit its limits within the next few years.

Explore further: A nanosized hydrogen generator

More information: Wafer-Scale Graphene Integrated Circuit, Science 10 June 2011: Vol. 332 no. 6035 pp. 1294-1297. DOI: 10.1126/science.1204428

ABSTRACT
A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

Related Stories

IBM introduces new graphene transistor

Apr 11, 2011

(PhysOrg.com) -- In a report published in Nature, Yu-ming Lin and Phaedon Avoris, IBM researchers, have announced the development of a new graphene transistor which is smaller and faster than the one they i ...

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

A huge step toward mass production of graphene

Mar 10, 2010

Scientists have leaped over a major hurdle in efforts to begin commercial production of a form of carbon that could rival silicon in its potential for revolutionizing electronics devices ranging from supercomputers ...

Graphene transistor could advance nanodevices

May 11, 2010

(PhysOrg.com) -- For years, scientists and researchers have been looking into the properties of carbon nanotubes and graphene for use in nanoelectronics. "There is no real mass application of devices based ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

17 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

nxtr
not rated yet Jun 10, 2011
researchers'