Nature's best magnifying glass views eary spiral galaxy

May 26, 2011
The gravity of a gigantic cluster of galaxies has bent and magnified the light of the distant spiral galaxy Sp1149 making its spiral arms visible and available for study by astronomers. Normally gravitational lensing distorts the structures of distant galaxies beyond recognition. The inset labaled "galaxy" shows how Sp1149 would look without lensing. Credit: Karen Teramura, University of Hawai'i Institute for Astronomy

( -- Astronomers in Hawaii have plucked unprecedented details from the life of an early galaxy using an unusually lucid gravitational lens coupled with the powerful 10-meter Keck II Telescope on Mauna Kea.

Gravitational lenses are Nature’s largest telescopes, created by colossally massive clusters of thousands of galaxies that bend and magnify the light of more distant objects behind them in a way similar to a glass lens. But gravitational lenses are far from perfect. Though they make very distant galaxies from the early universe visible to telescopes, they also put the images through a cosmic blender. As a result, the smeared and distorted images don’t offer much in the way of direct information about what the earliest galaxies looked like.

But that is not the case for an elegant little spiral galaxy called Sp1149, located 9.3 billion light-years away. The galaxy’s image has come through a magnified 22 times and fairly intact, as seen in a Hubble Space Telescope image. The image was first observed in detail by the University of Hawaii’s Tiantian Yuan and was initially taken by Harald Ebeling, also of Hawaii, and published by Graham P. Smith and colleagues in 2009. The giant cluster of galaxies that created the lens is located in the vast expanse of space between Sp1149 and Earth, and appears beside Sp1149 in the Hubble image.

The secret to Sp1149’s successful magnification is that it is in a special position behind the cluster which allows its light to be bent equally in all directions, explained astronomer Lisa Kewley of the University of Hawaii at Manoa.

“We’re lucky that it’s not being terribly distorted,” said Kewley. “Something so far away that’s not lensed would look like a blurred dot.”

The fact that you can distinguish the galactic core and spiral arms of Sp1149, plus the fact that we are seeing the galaxy as it was when the universe was only a third of its current age, makes it a great specimen for testing different models of how galaxies are born and then grow up to be places like our own Milky Way.

To that end, Yuan, Kewley and their colleagues aimed the Keck II Telescope at Sp1149. With the help of Laser Guide Star Adaptive Optics (which cancels out much of the optical distortions caused by Earth’s atmosphere) and the OSIRIS instrument (which filters out the noise created by hydroxyl molecules in Earth’s atmosphere) the researchers were able to get an unprecedented look at the distributions of elements in Sp1149. Oxygen, in particular, is very revealing because the element accumulates more in the older stellar neighborhoods – the parts of galaxies where stars have lived and died more. In the case of Sp1149, the oxygen distribution spoke volumes.

“The oxygen in the was much more concentrated at the center,” said Kewley. “They had a lot of star formation at the center.”

This sharp oxygen gradient, from core to outer disk, suggests that stars in the cores of galaxies form first and create the oldest stellar neighborhoods in Sp1149, followed later by the disk and arms. That supports what’s called the inside-out model of galactic evolution, she said.

“This is an idea that has been out there,” explained Kewley. “Some models predict the opposite. “It’s been an open question for a long time.” What has been needed was something other than a local galaxy to study to see how the oxygen gradients looked much earlier in a galaxy’s history. Without that, would have nothing but middle aged galaxies to judge from. They would be like a biologist studying the lives of frogs without ever having seen a tadpole.

“This is the first time anyone has done such a detailed and precise oxygen gradient that wasn’t on a local galaxy,” said Kewley. Yuan, Kewley and their colleagues published their discovery in the journal May 1 issue of Astrophysical Journal Letters (available online at

Now that the team has found one galactic tadpole, they are hunting for more, said Kewley. They also are hoping to study some galaxies that are midway between the ages of our local galaxies and Sp1149. With these samples from different ages, Kewley and her colleagues hope to piece together a much clearer life history of like our own.

Explore further: Survey Reveals Building Block Process For Biggest Galaxies

Related Stories

Survey Reveals Building Block Process For Biggest Galaxies

April 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Trick of Nature Allows Hubble and Keck to Find Tiny Galaxy

October 5, 2007

A team of astronomers at the University of California at Santa Barbara report that they have resolved a dwarf galaxy 6 billion light-years away. Weighing only 1/100 as much as our Milky Way Galaxy, the dwarf is much smaller ...

Penn astronomer opens new window on the universe's past

December 14, 2010

A new instrument designed, built and operated by University of Pennsylvania astronomer James Aguirre, with collaborators at the California Institute of Technology, Jet Propulsion Laboratory and University of Colorado, is ...

Giant galaxies akin to snowflakes in space

February 21, 2011

( -- Giant galaxies that contain billions of stars are born in much the same way as delicate snowflakes, new research from Swinburne University of Technology has shown.

Spitzer photo atlas of galaxy 'train wrecks'

May 25, 2011

( -- Five billion years from now, our Milky Way Galaxy will collide with the Andromeda Galaxy. This will mark a moment of both destruction and creation. The galaxies will lose their separate identities as they ...

Milky Way in mid-life crisis

May 25, 2011

( -- The Milky Way is suffering from a mid-life crisis with most of its star formation behind it, new research from Swinburne University of Technology has shown.

Recommended for you

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

Scientists detect stellar streams around Magellanic Clouds

November 23, 2015

(—Astronomers from the University of Cambridge, U.K., have detected a number of narrow streams and diffuse debris clouds around two nearby irregular dwarf galaxies called the Magellanic Clouds. The research also ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (4) May 26, 2011
Likewise I suppose curious inhabitants of Sp1149 may well be looking at our past galaxy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.