Breakthrough for MRSA treatment found

Apr 04, 2011
The polymers, which self-assemble in water, are physically attracted to infected cells and, unlike conventional antiobiotics, enter through the cell membrane (bottom right). Then, the nanostructures destroy infected blood cells from inside, causing the infection to clear (bottom left) without destroying healthy cells.

(PhysOrg.com) -- Researchers from IBM and the Institute of Bioengineering and Nanotechnology discovered a nanomedicine breakthrough in which new types of polymers were shown to physically detect and destroy antibiotic-resistant bacteria and infectious diseases like Methicillin-resistant Staphylococcus aureus, known as MRSA.

Discovered by applying principles used in semiconductor manufacturing, these nanostructures are physically attracted to infected cells like a magnet, allowing them to selectively eradicate difficult to treat bacteria without destroying healthy cells around them. These agents also prevent the bacteria from developing drug resistance by actually breaking through the bacterial cell wall and membrane, a fundamentally different mode of attack compared to traditional antibiotics.

is just one type of dangerous bacteria that is commonly found on the skin and easily contracted in places like gyms, schools and hospitals where people are in close contact. In 2005, MRSA was responsible for nearly 95,000 serious infections, and associated with almost 19,000 hospital stay-related deaths in the United States.

The challenge with infections like MRSA is two fold. First, drug resistance occurs because microorganisms are able to evolve to effectively resist antibiotics because current treatments leave their cell wall and membrane largely undamaged. Additionally, the high doses of antibiotics needed to kill such an infection indiscriminately destroy healthy red blood cells in addition to contaminated ones.

“The number of bacteria in the palm of a hand outnumbers the entire human population,” said Dr. James Hedrick, Advanced Organic Materials Scientist, IBM Research – Almaden. “With this discovery we’ve been able to leverage decades of materials development traditionally used for semiconductor technologies to create an entirely new drug delivery mechanism that could make them more specific and effective.”

If commercially manufactured, these biodegradable nanostructures could be injected directly into the body or applied topically to the skin, treating skin infections through consumer products like deodorant, soap, hand sanitizer, table wipes and preservatives, as well as be used to help heal wounds, tuberculosis and lung infections.

“Using our novel nanostructures, we can offer a viable therapeutic solution for the treatment of MRSA and other infectious diseases. This exciting discovery effectively integrates our capabilities in biomedical sciences and materials research to address key issues in conventional drug delivery,” said Dr. Yiyan Yang, Group Leader, Institute of Bioengineering and Nanotechnology, Singapore.

How it Works

The human body’s immune system is designed to protect us from harmful substances, both inside and out, but for a variety of reasons, many of today’s conventional antibiotics are either rejected by the body or have a limited success rate in treating drug-resistant bacteria. The antimicrobial agents developed by IBM Research and the Institute of Bioengineering and Nanotechnology are specifically designed to target an infected area to allow for a systemic delivery of the drug.

Once these polymers come into contact with water in or on the body, they self assemble into a new polymer structure that is designed to target bacteria membranes based on electrostatic interaction and break through their cell membranes and walls. The physical nature of this action prevents bacteria from developing resistance to these nanoparticles.

The electric charge naturally found in cells is important because the new polymer structures are attracted only to the infected areas while preserving the healthy red blood cells the body needs to transport oxygen throughout the body and combat bacteria.

Unlike most antimicrobial materials, these are biodegradable, which enhances their potential application because they are naturally eliminated from the body (rather than remaining behind and accumulating in organs).

The antimicrobial polymers created by IBM Research and the Institute of Bioengineering and Nanotechnology and were tested against clinical microbial samples by the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine and Zhejiang University in China. The full research paper was recently published in the peer-reviewed journal Nature Chemistry.

Researchers from IBM are already applying principles from nanotechnology to create potential medical innovations like the DNA Transistor and 3-D MRI. Most recently they have been working on a one step point-of-care-diagnostic test based on an innovative silicon chip that requires less sample volume, can be significantly faster, portable, easy to use, and can test for many diseases. Dubbed “Lab on a Chip,” the results are so quick and accurate that a small sample of a patient’s blood could be tested immediately following a heart attack to enable the doctor to quickly take a course of action to help the patient survive.

Explore further: Tissue regeneration using anti-inflammatory nanomolecules

Related Stories

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Singapore nanotechnology combats fatal brain infections

Jun 28, 2009

Doctors may get a new arsenal for meningitis treatment and the war on drug-resistant bacteria and fungal infections with novel peptide nanoparticles developed by scientists at the Institute of Bioengineering and Nanotechnology ...

Scientists trick bacteria with small molecules

Oct 07, 2010

(PhysOrg.com) -- A team of Yale University scientists has engineered the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the ...

Recommended for you

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
5 / 5 (2) Apr 04, 2011
So basically this week we have two independent teams come up with cures for MRSA.

About 18 months ago, allegedly, a team was working on a new antibiotic which was able to by-pass MRSA defenses, but couldn't single-handedly kill the MRSA, however the first antibiotic destroyed the MRSA defenses so that a small dose of common amoxycillin would then finish off the job.

So basicly, by the time they finish clinical trials, we should be able to eradicate all strains of staph completely.

I wonder what the average human life expectancy would be then? Maybe add perhaps 5 or 10 years?

Imagine: No boils, no zits, and far fewer dangerous or deadly infections.
flying_finn
not rated yet Apr 04, 2011
Sounds promising. Meanwhile the ability of copper surfaces to kill MRSA on contact offers an immediate solution............
martinwolf
5 / 5 (2) Apr 04, 2011
Amazing..I am floored by the announcements coming out every day that have signifigant implications for humanities efforts to know,survive and thrive..Gotta love the internets sharing abilities and utility at at least disseminating knowledge to those that make it happen really through taxes,purchases,donations etc..Go researchers go...martywolf of Red Bay
Beard
not rated yet Apr 05, 2011
Imagine: No boils, no zits, and far fewer dangerous or deadly infections.


Only with regular treatments to keep your supply of nanophages up. I hope it won't be expensive.