Team uncovers dengue fever virus' molecular secrets

Mar 08, 2011

Researchers at the Instituto de Medicina Molecular in Lisbon, Portugal and the Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, are making major strides toward understanding the life cycle of flaviviruses, which include some of the most virulent human pathogens: yellow fever virus, Dengue virus, and the West Nile Virus, among others.

Today, at the 55th Annual Meeting of the Biophysical Society in Baltimore, MD, members of the team will report on studies using as a model to elucidate the molecular details of the flavivirus life cycle -- work that may lead to new ways to fight Dengue infections, for which there are still no treatments and no effective preventative vaccines.

Dengue virus is one of the major causes of viral hemorrhagic fever worldwide, says Ivo Martins, a postdoctoral researcher in the group. About 40 percent of the world's population live in areas where this virus is transmitted. The World Health Organization estimates that 50-100 million people worldwide are infected with Dengue each year, and some 22,000 people die rom the virus -- mostly children.

Dengue virus is transmitted by the and Aedes albopictus mosquitoes, which are now found throughout the world, including in temperate regions such as the United States and France, where, in 2010, there were several cases of locally transmitted Dengue -- a disease that has been virtually unknown in these countries before.

"The burden that dengue infection (and other flaviviruses) poses on the economy and health systems of affected countries is considerable," says Martins. "Finding a dengue treatment, besides the obvious human health benefits, would thus benefit the economy in those countries immensely."

In Baltimore, Martins will discuss the group's use of biophysical techniques () combined with bioinformatics tools (genome sequence analysis) to elucidate the molecular details of interactions the Dengue virus capsid protein must make in order for it to replicate. In particular, the virus capsid protein must interact with intracellular lipid droplets in order for viral replication to be successful.

Explore further: Improving the productivity of tropical potato cultivation

More information: The presentation, "CHARACTERIZATION OF THE INTERACTION OF THE DENGUE VIRUS CAPSID PROTEIN WITH LIPID DROPLETS" by Ivo C. Martins et al is at 1:45 p.m. on Tuesday, March 8, 2011 in Hall C of the Baltimore Convention Center. ABSTRACT: tinyurl.com/688en3a

Provided by American Institute of Physics

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists find bacterium can halt dengue virus transmission

Apr 01, 2010

Dengue fever -- caused by a virus transmitted by mosquitoes -- threatens 2.5 billion people each year and there is no vaccine or treatment. New research by Michigan State University entomologists has found that a bacterium ...

Study: Dengue fever is underreported

Oct 16, 2007

The American Society of Tropical Medicine and Hygiene is concerned about the U.S. blood supply due to underreporting of dengue fever.

Recommended for you

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

Apr 16, 2014

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Rapid and accurate mRNA detection in plant tissues

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...