Physicists move closer to efficient single-photon sources

Mar 16, 2011

A team of physicists in the United Kingdom has taken a giant step toward realizing efficient single-photon sources, which are expected to enable much-coveted completely secure optical communications, also known as "quantum cryptography." The team presents its findings in Applied Physics Letters, a journal published by the American Institute of Physics.

Fluorescent "defect centers" in diamond act like atomic-scale light sources and are trapped in a transparent material that's large enough to be picked up manually. They don't need to be kept at super cold or trapped in large electromagnetic fields to be stable—unlike quantum dots or trapped atoms.

This makes them strong contenders for use as sources of single photons (the quantum light particle) in provably secure schemes, explains J. P. Hadden, a Ph.D. candidate in the Centre for Quantum Photonics, Department of Electrical and Electronic Engineering & H. H. Wills Physics Laboratory at the University of Bristol.

"Defect centers could also be used as building blocks for 'solid-state quantum computers,' which would use quantum effects to solve problems that are not efficiently solvable with current computer technology," Hadden says.

To fulfill the potential of diamond defect centers, it's essential that the light be collected efficiently from the diamond material. But this collection efficiency is dramatically reduced by reflection and refraction of light passing through the diamond-air interface.

"We managed to show an improvement in the brightness of these defect centers of up to ten times by etching hemispherical 'solid immersion lenses' into the diamond," notes Hadden. "This is an important result, showing how nanofabrication techniques can complement and enhance quantum technologies, and opens the door to diamond-defect-center-based implementations of quantum cryptography and quantum computation."

More recently, Hadden and colleagues developed a technique that allows them to reliably etch these structures over previously characterized defect centers to a precision of about 100 nanometers — another significant step toward a practical and repeatable combination of nanotechnology and quantum optics.

Explore further: How the physics of champagne bubbles may help address the world's future energy needs

More information: apl.aip.org/

Provided by American Institute of Physics

4.4 /5 (5 votes)

Related Stories

Diamonds and the holy grail of quantum computing

Jun 29, 2010

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time ...

Physicists set guidelines for qubit candidates

May 04, 2010

(PhysOrg.com) -- To build a quantum computer, it's essential to be able to quickly and efficiently manipulate the quantum states of qubits. The qubits, which are the basic unit of quantum information, can be composed of many ...

Recommended for you

What's next for the Large Hadron Collider?

Dec 17, 2014

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.