Breaking the mucus barrier unveils cancer cell secrets

Mar 16, 2011

Measuring the mechanical strength of cancer cell mucus layers provides clues about better ways to treat cancer, and also suggests why some cancer cells are more resistant to drugs than others, according to Kai-tak Wan, associate professor of engineering at Northeastern University, Boston, Mass.

According to Wan, healthy tissues naturally secrete mucus to protect against infection. Cancer cells, however, produce far more mucus than healthy cells.

Mucus consists of protein "stalks" attached to sugar sidechains, or "branches." This tangled brush forms a physical barrier. When over-expressed, it can prevent drugs from reaching the cancer cells beneath. Over-expressed mucus also makes it easier for cancer cells to break away from surrounding cells and move through the body, or metastasize.

Wan's research partner, Robert B. Campbell, an associate professor of pharmaceutical sciences at Massachusetts College of Pharmacy and Health Sciences, Worcester, Mass., is investigating the use of chemical agents that limit the formation of this tangled mucus barrier so medicines can get through.

To determine how well those agents work, Wan used the nanoscale tip of an to push against the mucus barrier. The less resistance it encountered, the less tangled the barrier.

Wan found that suppressing the formation of mucus sidechains significantly reduced the energy needed to pierce the mucus barrier in lung, breast, colorectal, pancreatic, and wild type (natural) ovarian cancer cells.

Yet the treatment registered barely any change in multi-drug resistant ovarian . No one understands how those cells resist drugs that ordinarily kill wild type .

Wan's research points to an important difference. The mucus layer formed by the two types of cells reacts differently to the same chemical treatment.

"How this phenomenon is related to biochemistry is unknown at this stage, but it tells us what we should be looking at in future research," Wan said about his and Campbell's conclusions.

Explore further: By measuring infrared emissivity, work is being done to improve the features of solar thermal collectors

More information: The article, "Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery" by Xin Wang, Aalok A. Shah, Robert B. Campbell, and Kai-tak Wan appears in the journal Applied Physics Letters. link.aip.org/link/applab/v97/i26/p263703/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Mucin found as barrier to pancreatic cancer drug

Jan 15, 2009

(PhysOrg.com) -- Current treatments for pancreatic cancer have failed to effectively manage the disease and improve the grim survival rate. A Northeastern University study found that the thick layer of mucin covering the ...

Recommended for you

First in-situ images of void collapse in explosives

16 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0