Nanoscale gene 'ignition switch' may help spot and treat cancer

Dec 15, 2010
Nanoscale gene 'ignition switch' may help spot and treat cancer
Martin Pomper, M.D., Ph.D.

(PhysOrg.com) -- In a proof of principal study in mice, scientists at Johns Hopkins and the Virginia Commonwealth University (VCU) have shown that a set of genetic instructions encased in a nanoparticle can be used as an "ignition switch" to rev up gene activity that aids cancer detection and treatment.

The switch, called a promoter, is a set of chemical letters that interacts with DNA to turn on . In this case, the scientists used a promoter called PEG-Prom, cloned by VCU researcher Paul Fisher, Ph.D. PEG-Prom is activated only when inside cancer cells, not in normal ones.

"With current imaging devices like CT and PET, we can tell if something is wrong in a patient, but we don't have definitive tools to distinguish cancer from inflammation or infection," says Martin Pomper, M.D., Ph.D., professor of radiology at Johns Hopkins. "It generally takes at least one month after giving patients certain cancer treatments before existing imaging tools can measure the patient's response to the therapy."

To differentiate cancer cells from normal cells, Johns Hopkins scientists connected PEG-Prom to either a gene that produces firefly luciferase, the substance that make fireflies glow, or a gene called HSV1tk, which initiates a chemical reaction with radioactive labels inside the cell that can be detected by imaging devices. Once inside a cancer cell, the PEG-Prom switch is turned on, and it activates either the luciferase or HSV1tk gene.

Then, they stuffed the PEG-Prom/gene combination into tiny spheres – about 50,000 times smaller than the head of a pin – and intravenously injected the into mice with either metastatic breast cancer or melanoma.

The findings, reported in the December 12 online edition of Nature Medicine, reveal a 30-fold difference in identifying cancer cells containing luciferase and normal cells that did not contain the substance. Similar results were observed in cancer cells filled with the radioactive labels and normal ones that were not.

"This type of imaging technique has the potential to add to existing tools with more specificity in identifying the problem," says Pomper.

Pomper says that the technique could likely be used in any cancer, and the nanoparticle and HSV1tk gene used in the current study have been tested previously in clinical studies unrelated to Pomper's work.

In addition to diagnostic and monitoring tools, the technique could be designed to deliver therapies to the heart of cancer cells. One approach, he says is to use radioactive isotopes to make radioactive from the inside, instead of delivering radiation to the patient externally.

Still, Pomper says, such a technique would be limited to identifying tumors that are two millimeters or larger, amounting to millions of cells, because current imaging devices cannot detect anything smaller. He also says that certain doses of nanoparticles could be toxic, so his team is conducting tests to find the best nanoparticle.

Explore further: Tissue regeneration using anti-inflammatory nanomolecules

Provided by Johns Hopkins Medical Institutions

4.3 /5 (3 votes)

Related Stories

Targeted therapy from within

Jul 28, 2009

A group of researchers at Johns Hopkins University has designed nanoparticles that can carry cancer-treating radioisotopes through the body and deliver them selectively to tumors. Today in Anaheim, CA, they will report the ...

Recommended for you

Tissue regeneration using anti-inflammatory nanomolecules

16 hours ago

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

User comments : 0