Study of tiny magnets may advance their use in microelectronics

Oct 19, 2010

In the world of the very small, researchers at Shanxi University in China have announced progress in understanding the single-molecule magnet, which combines the classical macroscale properties of a magnet with the quantum properties of a nanoscale entity. In the Journal of Applied Physics, Hai-Bin Xue and colleagues studied the statistics of how electrons move through a single-molecule magnet to better understand the magnet's inner level structure.

Understanding the single-molecule magnet inner level structure is an important step toward the development of revolutionary ways to store and process information, as well as quantum computation. The results are important to the field of molecular , which combines molecular electronics with the field of spintronics -- the manipulation of spin and charge.

"The single-molecule magnet can be regarded as a magnetic quantum dot with a more complex level structure," says co-author Yi-Hang Nie, "which makes it a good candidate for molecular spintronics devices."

How move through single-molecule magnets is not well understood. "The current-voltage characteristics of such a system are not known well enough for practical application," says co-author Hai Bin Xue. "Our results go significantly beyond earlier studies of magnetic molecules in general, for which the current noise has been studied very little. The predictions permit experimental tests in the near future."

Explore further: New method for non-invasive prostate cancer screening

More information: The article, "Tunable electron counting statistics in a single-molecule magnet," by Hai-Bin Xue, Y.-H. Nie, Z.-J. Li, and J.-Q. Liang appears in the Journal of Applied Physics. link.aip.org/link/japiau/v108/i3/p033707/s1

Provided by American Institute of Physics

5 /5 (4 votes)

Related Stories

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin polarization achieved in room temperature silicon

Nov 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, ...

Scientists discover magnetic superatoms

Jun 15, 2009

A team of Virginia Commonwealth University scientists has discovered a 'magnetic superatom' - a stable cluster of atoms that can mimic different elements of the periodic table - that one day may be used to ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

7 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0