Nanotube thermopower: Efforts to store energy in carbon nanotubes described

Oct 20, 2010

When weighing options for energy storage, different factors can be important, such as energy density or power density, depending on the circumstances. Generally batteries -- which store energy by separating chemicals -- are better for delivering lots of energy, while capacitors -- which store energy by separating electrical charges -- are better for delivering lots of power (energy per time). It would be nice, of course, to have both.

Today at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico, Michael Strano and his colleagues at MIT will report on efforts to store energy in thin carbon nanotubes by adding fuel along the length of the tube, chemical energy, which can later be turned into electricity by heating one end of the nanotubes. This thermopower process works as follows: the heat sets up a chain reaction, and a wave of conversion travels down the nanotubes at a speed of about 10 m/s.

"Carbon nanotubes continue to teach us new things -- thermopower waves as a first discovery open a new space of power generation and reactive wave physics," Strano says.

A typical lithium ion battery has a power density of 1 kW/kg. Although the MIT researchers have yet to scale up their nanotube materials, they obtain discharge pulses with power densities around 7 kW/kg.

Strano will also be reporting new results on experiments exploiting carbon nanopores of unprecedented size, 1.7 nm in diameter and 500 microns long.

"Carbon nanopores," he says, "allow us to trap and detect single molecules and count them one by one," the first time this has been done. And this was at room temperature.

The single molecules under study can move across the nanotubes one at a time in a process called coherence resonance. "This has never been shown before for any inorganic system to date," says Strano, "but it underpins the workings of biological ion channels."

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: The presentation, "New Concepts in Molecular and Energy Transport Within Carbon Nanotubes: Thermopower Waves and Stochastically Resonant Ion Channels" is at 4:40 p.m. on Tuesday, October 19, 2010. ABSTRACT: www.avssymposium.org/Open/Sear… PaperNumber=NS-TuA-9

Provided by American Institute of Physics

3 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers develop a way to funnel solar energy

Sep 12, 2010

(PhysOrg.com) -- Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.