Quantum entanglement in photosynthesis and evolution

July 21, 2010

Recently, academic debate has been swirling around the existence of unusual quantum mechanical effects in the most ubiquitous of phenomena, including photosynthesis, the process by which organisms convert light into chemical energy.

In particular, physicists have suggested that entanglement (the quantum interconnection of two or more objects like photons, electrons, or atoms that are separated in physical space) could be occurring in the photosynthetic complexes of plants, particularly in the pigment molecules, or chromophores. The quantum effects may explain why the structures are so efficient at converting light into energy -- doing so at 95 percent or more.

In a paper in The , which is published by the American Institute of Physics, these ideas are put to the test in a novel computer simulation of energy transport in a photosynthetic reaction center. Using the simulation, professor Shaul Mukamel and senior research associate Darius Abramavicius at the University of California, Irvine show that long-lived quantum coherence is an "essential ingredient for storage and manipulation," according to Mukamel. It is possible between chromophores even at room temperature, he says, and it "can strongly affect the light-harvesting efficiency."

If the existence of such effects can be substantiated experimentally, he says, this understanding of quantum energy transfer and charge separation pathways may help the design of that take their inspiration from nature.

Explore further: Researchers violate Bell’s inequality with an atom and a photon

More information: The article, "Quantum oscillatory exciton migration in photosynthetic reaction centers" by Darius Abramavicius and Shaul Mukamel will appear in The Journal of Chemical Physics. See: jcp.aip.org/

Related Stories

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Discovery brings organic solar cells a step closer

January 15, 2009

Inexpensive solar cells, vastly improved medical imaging techniques and lighter and more flexible television screens are among the potential applications envisioned for organic electronics.

Physicist proposes method to teleport energy

February 5, 2010

(PhysOrg.com) -- Using the same quantum principles that enable the teleportation of information, a new proposal shows how it may be possible to teleport energy. By exploiting the quantum energy fluctuations in entangled particles, ...

Untangling the quantum entanglement behind photosynthesis

May 10, 2010

The future of clean green solar power may well hinge on scientists being able to unravel the mysteries of photosynthesis, the process by which green plants convert sunlight into electrochemical energy. To this end, researchers ...

Recommended for you

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Jigga
3 / 5 (2) Jul 21, 2010
Solar energy is converted into chemical energy more efficiently (by about 7%) thanks to quantum coherence. The pigment array in thylakoid lamellas
i.e. quantasomes appear pretty similar to quantum dots arrays. Each quantasome contains about 230 to 300 chlorophyll molecules. They're regularly spaced in 150 x 180 A lattice, like quantum vortices within superconductors (Abrikosov lattice). All the molecules in each of these photo-synthetic units are spaced and oriented in such a way, captured photons are transferred from molecule to molecule by inductive resonance and the energy absorbed is transferred to as exciton.

Experiments have demonstrated, that the presence of the quantasome particles in chloroplast membrane is not a necessary condition for photoreduction activity of chloroplasts [J. Mol. Biol., 27, 323 (1967)] In prokaryota pigments are distributed uniformly on or in the thylakoid lamellae.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.