Hybrid molecules show promise for exploring, treating Alzheimer's

November 4, 2009

One of the many mysteries of Alzheimer's disease is how protein-like snippets called amyloid-beta peptides, which clump together to form plaques in the brain, may cause cell death, leading to the disease's devastating symptoms of memory loss and other mental difficulties.

In order to answer that key question and develop new approaches to preventing the damage, scientists must first understand how amyloid-beta forms the telltale clumps.

University of Michigan researchers have developed new molecular tools that can be used to investigate the process. The molecules also hold promise in Alzheimer's disease treatment. The research, led by assistant professor Mi Hee Lim, was published online this week in the Journal of the American Chemical Society.

Though the exact mechanism for amyloid-beta clump formation isn't known, scientists do know that copper and zinc ions are somehow involved, not only in the aggregation process, but apparently also in the resulting injury. Copper, in particular, has been implicated in generating , which can cause cell damage.

One way of studying the role of metals in the process is by sopping up the with molecules called chelators and then seeing what happens when the metal ions are out of the picture. When other scientists have done this they've found that chelators, by removing metals, hamper both amyloid beta clumping and the production of those harmful reactive oxygen species, suggesting that chelators could be useful in treating Alzheimer's disease.

However, most known chelators can't cross the blood-brain barrier, the barricade of cells that separates from circulating blood, protecting the brain from harmful substances in the bloodstream. What's more, most chelators aren't precise enough to target only the metal ions in amyloid-beta; they're just as likely to grab and disable metals performing vital roles in other biological systems.

Lim and coworkers used a new strategy to develop "bi-functional" small molecules that not only grab metal ions, but also interact with amyloid-beta.

"The idea is simple," said Lim, who has joint appointments in the Department of Chemistry and the Life Sciences Institute. "We found molecules known for amyloid-beta recognition and then attached metal binding sites to them." In collaboration with Ayyalusamy Ramamoorthy, professor of chemistry and associate professor of biophysics, Lim then used NMR spectroscopy to confirm that the new, hybrid molecules still interacted with amyloid-beta.

In experiments in solutions with or without living cells, the researchers showed that the bi-functional molecules were able to regulate copper-induced amyloid-beta aggregation, not only disrupting the formation of clumps, but also breaking up clumps that already had formed. In fact, their molecules performed better than clioquinol, a clinically-available metal chelator that showed promise in early trials with Alzheimer's patients, but has side effects that limit its long-term use.

"Based on their small size and other properties, we believe our compounds will be able to cross the blood-brain barrier, but we want to confirm that using mouse models," Lim said. The researchers also plan experiments to see if their new chelators are as good at preventing and breaking up amyloid-beta plaques in the brains of mice as they are in solutions and cultured cells.

More information: ---http://pubs.acs.org/journal/jacsat

Source: University of Michigan (news : web)

Explore further: Alzheimer's prevention role discovered for prions

Related Stories

Alzheimer's prevention role discovered for prions

July 3, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

QBI neuroscientists make Alzheimer's disease advance

June 10, 2008

Queensland Brain Institute (QBI) neuroscientists at UQ have discovered a new way to reduce neuronal loss in the brain of a person with Alzheimer's disease. Memory loss in people with Alzheimer's disease can be attributed ...

Anti-inflammatory drug blocks brain plaques

June 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Researchers find new piece in Alzheimer's puzzle

February 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which amyloid-beta ...

Enzyme may be a key to Alzheimer's-related cell death

October 6, 2009

(PhysOrg.com) -- A Purdue University researcher has discovered that the amount of an enzyme present in neurons can affect the mechanism thought to cause cell death in Alzheimer's disease patients and may have applications ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.