New research may lead to revolutionary new devices

Sep 25, 2009
Credit: Adam Tsen, Cornell University

Dr. Jiwoong Park of Cornell University, who receives funding for basic research from the Air Force Office of Scientific Research (AFOSR), is investigating carbon nanostructures that may some day be used in electronic, thermal, mechanical and sensing devices for the Air Force.

"Devices that are required in many of the Air Force missions are somewhat different from commercial ones in the sense that they are often exposed to harsh environments while maintaining their maximum performance," Park said. "Carbon-based nanostructures, including carbon nanotubes and graphenes (thin layers of graphite) present many exciting properties that may lead to new device structures."

Park's team of researchers is examining single molecules, nanocrystals, nanowires, carbon nanotubes and their arrays in an effort to find a "bridging" material that has a stable structure for making molecular-level bonds. In addition, they are seeking an effective tool for resolving functional and structural challenges. If successful, they will be able to apply the research to future technological advances.

Park's research may contribute to the discovery of new electronic and that will revolutionize electrical engineering and bioengineering as well as physical and materials science.

As a result of Park's highly innovative work, the U.S. government has selected him to be a 2008 PECASE (Presidential Early Career Award in Science and Engineering) Award winner. The prestigious and much sought after award is the highest honor the government presents to promising scientists and engineers at the beginning of their careers. Each award winner receives a citation, a plaque, and up to $1 million in funding from the nominating agency (AFOSR).

"I fully expect that over the five-year period of the PECASE award, Professor Park will have established himself as a world leader in and graphene research," said Dr. Harold Weinstock, the AFOSR program manager responsible for nominating Park.

Source: Air Force Office of Scientific Research

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Measuring conductance of carbon nanotubes, one by one

Dec 15, 2008

(PhysOrg.com) -- A single batch of carbon nanotubes -- molecular carbon cylinders that may one day revolutionize electronics engineering -- often includes more than 100 types of tubes, each with different ...

Recommended for you

Graphene and diamonds prove a slippery combination

14 hours ago

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sams
not rated yet Sep 25, 2009
"New research may lead to revolutionary new devices" - running out of headline ideas?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.