Reversing ecology reveals ancient environments

Feb 25, 2009

From hair color to the ancestral line of parasitic bacteria, scientists can glean a lot from genes. But imagine if genes also revealed where you lived or who you spent time with. It turns out they do, if you know where and how to look.

Stanford researchers with collaborators at Tel-Aviv University have now laid the foundation for opening such a window to the past using a technique called "reverse ecology." The technique uses genomic data to examine metabolic networks and pulls out proxies for reconstructing bacterial environments millions of years in the past. The work, published in the February issue of the Journal of Computational Biology, offers clues to the complex evolutionary interplay between organisms such as parasites and hosts.

"Based on reverse ecology, you can start with an organism-say, a certain bacterial species that you know nothing about ecologically. But by looking at its genome and metabolic network, you can recreate that past environment the organism lived in," said Elhanan Borenstein, lead author of the paper and a postdoctoral researcher in the Biology Department at Stanford. "And we've done this with hundreds of different species."

Researchers have used genomic data to study metabolic networks-the chemical reactions in metabolism that determine the physiological and biochemical properties of cells-in great detail. But Borenstein, with co-author Marcus Feldman, a professor of biology at Stanford, took this understanding a step further.

Through the metabolic network, organisms accumulate biochemical compounds from their interactions with the surrounding environment (e.g., oxygen, glutamine or sulfate). These molecules also correlate with other environmental properties like temperature and salinity. "This gives us a way to predict the biochemical environment of organisms and learn ecology from the genomic data on a large scale," Borenstein said.

The researchers collected clues about not only the organism's environment but also its relationship to other species. For example, they detected a specific signature for adaptation between a parasite and host. What's more, they could tell what kind of host the parasite was living in based on the alignment between the environment a parasite requires and that required by the host. "We can see a signal to distinguish between a mammal parasite and an insect parasite," Borenstein said. "And how the interaction evolved over time."

Now that they have a data set that reveals the current and ancient environment of hundreds of bacterial species, Borenstein and colleagues hope to use their data to discern major environmental events of the past, including key events in the history of life on Earth.

The next step is to move from looking at individual bacteria species to entire communities. In particular, Borenstein hopes to explore large collections of host-dwelling bacteria like those living in the human gut or mouth or the communities found in soils. The complicated and intricate ecology of these systems should now be accessible given the genomic data that researchers continue to unveil.

"The important thing," Borenstein said, "is that we now know there is a way to learn ecology from genomic data, and we can do this on a very large scale."

Source: Stanford University

Explore further: Godwits are flexible... when they get the chance

Related Stories

South American parrot in trouble: researchers

7 hours ago

A South American parrot with a wine-colored chest is in deep trouble, with its population down to some 3,000 and a habitat reduced to a speck of what it once was, researchers said Tuesday.

Recommended for you

Godwits are flexible... when they get the chance

2 hours ago

Black-tailed godwits are able to cope with unpredictable weather. This was revealed by a thorough analysis of the extraordinary spring of 2013 by ecologist Nathan Senner of the University of Groningen and ...

Rules aim to protect imperiled bird's habitat in 10 states

10 hours ago

Interior Secretary Sally Jewell revealed plans Thursday to preserve habitat in 10 Western states for an imperiled ground-dwelling bird, the federal government's biggest land-planning effort to date for conservation of a single ...

Understanding how cells follow electric fields

11 hours ago

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.