Universally speaking, Earthlings share a nice neighborhood

August 8, 2008
An artist's rendering of a Jupiter-like planet, the larger of the two planets pictured, orbiting a star outside our solar system. Here in our solar system, Jupiter may act as a "junk yard dog," protecting the Earth from comets, maintaining stability and sustaining life as we know it. New research finds stable solar systems such as ours to be the exception, rather than the rule in the universe. Credit: Artwork by Lynette Cook

We don't have spacecraft to take us outside our solar system--not yet, at least. Still, astronomers thought they had a pretty good understanding of how our solar system formed and in turn, how others formed. In the last dozen years, nearly 300 exoplanets have been discovered. Are the solar systems in which they reside indeed like our own?

Without knowledge or observations to the contrary, conventional knowledge said yes. Three Northwestern University researchers questioned that assumption and explored this question. What they learned is that the solar system in which the Earth orbits our sun is actually uncommon.

Edward Thommes, Soko Matsumura and Frederic Rasio were the first to develop large-scale, sophisticated computer simulations to model the formation of planetary systems from beginning to end. Because of computing limitations, earlier models provided only brief glimpses of the process. The surprising findings of their study titled, "Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems," are detailed in the August 8, 2008 issue of Science magazine.

The researchers used a range of computer simulations to explore the formation of extra-solar planetary systems. They were able to show the action of a planet-forming circumstellar disk in three different starting condition scenarios at different intervals from the beginning of the universe to 500 million years of evolution. They found that our solar system represents the rare case in which big gas giants form, but do not migrate to the inner planetary system, and the orbits of all of the planets in the system are circular and stable.

"We now know that these other planetary systems don't look like the solar system at all," said Frederic A. Rasio, senior author of the Science paper, and a theoretical astrophysicist and professor of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. "We now better understand the process of planet formation and can explain the properties of the strange exoplanets we've observed. We also know that the solar system is special and understand at some level what makes it special."

Source: National Science Foundation

Explore further: CubeSat to create a map of water ice on the moon

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

New Hubble image of the Twin Jet Nebula

August 26, 2015

The shimmering colours visible in this NASA/ESA Hubble Space Telescope image show off the remarkable complexity of the Twin Jet Nebula. The new image highlights the nebula's shells and its knots of expanding gas in striking ...

Biophysicists take small step in quest for 'robot scientist'

August 25, 2015

Biophysicists have taken another small step forward in the quest for an automated method to infer models describing a system's dynamics - a so-called robot scientist. Nature Communications published the finding - a practical ...

Secret of Rosetta's cool

August 20, 2015

These might resemble venetian window blinds, but they are actually a key technology enabling ESA's Rosetta spacecraft to travel safely from the Sun-warmed inner Solar System to the frigid expanse of the Asteroid Belt, then ...

Recommended for you

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Comet Hitchhiker would take tour of small bodies

September 2, 2015

Catching a ride from one solar system body to another isn't easy. You have to figure out how to land your spacecraft safely and then get it on its way to the next destination. The landing part is especially tricky for asteroids ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
1.7 / 5 (6) Aug 08, 2008
that is planetary systems formed under laws of gravity and gas laws alone. no input from electricity and plasma.
Gregori
3.3 / 5 (6) Aug 08, 2008
We lack the instrumentation sensitive enough to make accurate judgments about what are and what aren't common planetary systems.

When we're able to see all planets around a given star - then we can say something that's worth a damn!

Alexa
1.7 / 5 (3) Aug 08, 2008
the orbits of all of the planets in the system are circular and stable
Well, these guys probably didn't realize, this is a typical behavior of all gravitational systems, which are sufficiently old and stabilized...;-) Of course, it requires to prolong the simulation and to consider subtle gravitational effects in it.

Do you know, the similar problem is with well known Schwarzschild solution of black holes? Such solution is steady-state, but it would require a longer time, then the age of Universe to establish under real circumstances - so it's completely unphysical one. Unfortunately, it still forms the base of most of contemporary black hole theories.
dirk_bruere
4.3 / 5 (3) Aug 08, 2008
I would have been more impressed with the computer model if Hot Jupiters had been predicted *before* they were discovered. There's always a suspicion that maybe the model has been tweaked to fit the (now) known data.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.