Genome of saltwater creature could aid understanding of gene grouping

August 20, 2008

The genetic code of a simple saltwater creature could help researchers learn more about how groups of genes function in humans and other species.

A study published this week in the journal Nature breaks down the genetic code of Trichoplax, a simple saltwater creature that one might find anywhere in the world, even in the common household aquarium.

"We're trying to identify, in the Trichoplax, genes that are also found in other animals - our genome and the fruit fly genome and so on," said study co-author Nicholas Putnam, an assistant professor of ecology and evolutionary biology at Rice University. Recognizing common genes among many species helps scientists figure out their lineage, as well as where they diverge.

What Putnam finds interesting about this saltwater creature is how common some elements of its genetic code are to other classes of life and how that kind of data might help scientists learn the ways groups of genes function.

Why Trichoplax? Sequencing a genome is "a big effort and a big investment, and so we have to choose carefully," Putnam said. "The motivation for choosing this animal was its phylogenetic position" – its relatively low place in the evolutionary chain.

Trichoplax is "a tiny little pancake of cells you can barely see without a microscope," he said. "And they're extremely simple – about as simple as you can be – just a disc of cells that's two layers thick."

Still, humans share elements with the lowly beast that only become evident through charting its DNA. A gene index published as part of the Nature paper, titled "The Trichoplax Genome and the Nature of Placozoans," clearly shows many large collections of genes that group together on both the Trichoplax and human chromosomes.

The chart is very much a product of Putnam's work. Though his doctorate at the University of California at Berkeley is in physics, he found himself pulled into genomics for his computer skills, writing assembly code to make practical the analysis of a genetic sequence.

Putnam came to Rice to continue his search for the common roots of genetic similarities between wildly divergent creatures.

What purpose do these large, conserved groupings of genes serve? "Well, that's one of the main questions I'm going after now that I'm setting up my own lab," he said. "Is there a reason they're together? And if they get separated by a mutation, does that disrupt some mechanism of gene regulation, or cause some other problem for an organism?"

Or, he wondered, is our understanding of the process flawed? It's a big question, he acknowledged.

"But it's a very clear question. And I've decided to try to find the answer to that."

Source: Rice University

Explore further: Researchers uncover key to barley domestication

Related Stories

Why do mitochondria retain their own genome?

July 24, 2015

It sounds like science fiction to suggest that every cell in the human body is occupied by a tiny genome-equipped organelle, with which we exist in symbiosis. But in actuality, eukaryotic life is dependent on mitochondria, ...

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

HenisDov
not rated yet Aug 21, 2008
Understand Genes Grouping In Genomes?

A. "Humans share elements with the lowly beast..."

http://www.eureka...2008.php

- "... many large collections of genes...group together on both the Trichoplax and human chromosomes..."

- "What purpose do these large, conserved groupings of genes serve? "Well, that's one of the main questions I'm going after now that I'm setting up my own lab," he said. "Is there a reason they're together? And if they get separated by a mutation, does that disrupt some mechanism of gene regulation, or cause some other problem for an organism?"


B. To understand "Genes Grouping In Genomes" understand what life is...and understand:

- That Darwinian evolution, as now redefined, started at life's day one on Earth...

- And that Earth life consists of three strata: genes are primal organisms, genomes are evolved second stratum organisms, and cellular organisms are evolved third stratum...


About time that scientists guilds, their Establishment, shake off their pre Copernicus inertia and reformulate their thinking and work accordingly...


Dov Henis
http://blog.360.y...Q--?cq=1

PS:

The OCM, outer cell membrane, is but an organ of the genome, which IS the organism

Genes are primal and genomes are evolved multigenes organisms

Earth Life: 1. a format of temporarily constrained energy, retained in temporary constrained genetic energy packages in forms of genes, genomes and organisms 2. a real virtual affair that pops in and out of existence in its matrix, which is the energy constrained in Earth's biosphere.

Earth organism: a temporary self-replicable constrained-energy genetic system that supports and maintains Earth's biosphere by maintenance of genes.

Gene: a primal Earth's organism.

Genome: a multigenes organism consisting of a cooperative commune of its member genes.

Cellular organisms: mono- or multi-celled earth organisms.

DH

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.