Scientists in Japan design first optical pacemaker for laboratory research

May 28, 2008

The world's first optical pacemaker is described in an article published today in Optics Express, the Optical Society’s open-access journal. A team of scientists at Osaka University in Japan show that powerful, but very short, laser pulses can help control the beating of heart muscle cells.

"If you put a large amount of laser power through these cells over a very short time period, you get a huge response," says Nicholas Smith, who led the research. The laser pulses cause the release of calcium ions within the cells, Smith explains, and this action forces the cells to contract.

This technique provides a tool for controlling heart muscle cells in the laboratory, a breakthrough that may help scientists better understand the mechanism of heart muscle contraction.

One potential application of this technology is in studying uncoordinated contractions in heart muscle. Normally, heart muscle contracts in a highly coordinated fashion, and this is what allows the heart to pump blood through the vasculature. But in some people, this coordinated beating breaks down, and the heart twitches irregularly—a condition known as fibrillation.

The new laser technique may allow scientists to create a form of fibrillation in the test tube. The lasers can destabilize the beating of the cells in laboratory experiments by introducing a beat frequency in one target cell distinct from the surrounding cells. This would allow scientists to study irregular heart beats on a cellular level and screen anti-fibrillation drugs.

Outside the laboratory, exposing heart muscle cells to powerful laser pulses can have its drawbacks. Although the laser pulses last for less than a trillionth of a second, damaging effects can build up over time and this currently limits the possibility of clinical applications.

Source: Optical Society of America

Explore further: Severe obesity revealed as a stand-alone high-risk factor for heart failure

Related Stories

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.