MIT studies robotic training for astronauts

May 29, 2008
MIT studies robotic training for astronauts
An aeronautics and astronautics project led by MIT researcher Chuck Oman aims to provide better training systems for astronauts to learn how to use robotic arms in space. At left, Joseph Silverman, a sophomore in mechanical engineering, tries his hand with the joysticks that control the robotic arm. At right is graduate student Zakiya Tomlinson, who is running the experiment. Photo / Donna Coveney

The space shuttle's 45-foot robotic arm may look simple and automatic as it gracefully lifts a multi-ton satellite from the cargo bay and lets it drift off into space. Far from it.

Controlling the spindly arm is a delicate process of manipulating multi-axis joysticks with both hands simultaneously - a feat that makes rubbing your stomach while patting your head seem like, well, child's play.

For years, NASA trainers have given astronauts a series of tests before teaching them to control the multi-jointed arm - an enhanced version of which was attached to the International Space Station during an April shuttle mission. But it turns out they've never checked to see how those test scores relate to the training's outcome.

MIT faculty and graduate students have started to remedy that, by doing a systematic evaluation of the effectiveness of the tests in predicting performance. As they continue a four-year project funded by NASA's National Space Biomedical Research Institute, they will see whether other tests could do better.

Andrew Liu, a research scientist in MIT's Man Vehicle Laboratory, has been leading the project, and began by comparing records of test results and actual performance from 40 astronauts, provided by Johnson Space Center and the Astronaut Office of NASA. Zakiya Tomlinson, a graduate student in the aeronautics and astronautics department, has been running simulation training tests here under the supervision of Liu and Charles Oman, director of the Man Vehicle Laboratory.

Liu presented the first report on the research on May 13 at the Aerospace Medical Association meeting in Boston. The results show “they're not good enough for decisions affecting their career path, but just for things like adjusting schedules,” says Tomlinson. “The tests might be suited for selecting training methods, like how many sessions they might need.”

Oman explains that “a lot more has been learned in recent years, about the psychological and physical sides of spatial intelligence. People think differently” about such tasks as mentally rotating a complex shape, but NASA's training has not yet adapted in light of new findings.

In NASA's astronaut training, as well as in actual operation of the robot arm in space, astronauts work in pairs with one operating the controls and another observing. In the next round of MIT tests, the training will simulate the role of the observer, Tomlinson explains.

This might help to determine how much of the ability is related to visual skills in spatial orientation, and how much has to do with manual dexterity in operating the controls. With the “observer” training, manual dexterity no longer makes a difference.

Eventually, the research might also lead to better ways of designing the actual control systems and displays to make the process easier and more intuitive to learn and to use, Tomlinson says.

As part of the research, Tomlinson and other team members spent time in Houston working with the actual system used for astronaut training. After she earns her masters degree, “I would love to go back and actually become a trainer,” she says.

Source: MIT

Explore further: Don't blink or you might miss the leap second on Tuesday

Related Stories

Looking back at the Mir space station

Jun 18, 2015

The Mir Space Station was Russia's greatest space station, and the first modular space station to be assembled in orbit. Commissioned in 1986, the name can be translated from Russian as "peace", "world", ...

Safe use of multi-core technology for mobility

Jun 16, 2015

Information technologies provide cars and planes with many useful assistance systems and determine product properties. In the future, the necessary computation capacity will be supplied by multi-core processors ...

Swissto12 conquering space with 3D printing

Jun 16, 2015

Satellite communications could be streamlined by light and inexpensive antennas that have been developed by SWISSto12. This EPFL spin-off has just signed a major contract with the European Space Agency to ...

Dogs are able to follow human gaze

Jun 12, 2015

Dogs are known to be excellent readers of human body language in multiple situations. Surprisingly, however, scientists have so far found that dogs do not follow human gaze into distant space. Scientists ...

GE unveils experimental ecoROTR wind turbine

Jun 09, 2015

The hillsides around Tehachapi, a brown and blustery town on the edge of California's Mojave Desert, are bristling with a forest of wind turbines of all makes and sizes.

Recommended for you

Early Titan was a cold, hostile place for life

10 hours ago

Titan is a mysterious orange-socked moon of Saturn that is exciting to astrobiologists because it has some of the same kinds of chemicals that were precursors to life on Earth. It also has a hydrological ...

Image: Spirals in Saturn's D Ring

11 hours ago

Although the D ring of Saturn is so thin that it's barely noticeable compared to the rest of the ring system, it still displays structures seen in other Saturnian rings. Here the spiral structures in the ...

Russian cosmonaut sets record for most time in space

12 hours ago

Russian cosmonaut Gennady Padalka, who is the current commander of the International Space Station, has set a new record for most time spent in space, with a total of 803 days, Russian space agency said Tuesday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.