MIT studies robotic training for astronauts

May 29, 2008
MIT studies robotic training for astronauts
An aeronautics and astronautics project led by MIT researcher Chuck Oman aims to provide better training systems for astronauts to learn how to use robotic arms in space. At left, Joseph Silverman, a sophomore in mechanical engineering, tries his hand with the joysticks that control the robotic arm. At right is graduate student Zakiya Tomlinson, who is running the experiment. Photo / Donna Coveney

The space shuttle's 45-foot robotic arm may look simple and automatic as it gracefully lifts a multi-ton satellite from the cargo bay and lets it drift off into space. Far from it.

Controlling the spindly arm is a delicate process of manipulating multi-axis joysticks with both hands simultaneously - a feat that makes rubbing your stomach while patting your head seem like, well, child's play.

For years, NASA trainers have given astronauts a series of tests before teaching them to control the multi-jointed arm - an enhanced version of which was attached to the International Space Station during an April shuttle mission. But it turns out they've never checked to see how those test scores relate to the training's outcome.

MIT faculty and graduate students have started to remedy that, by doing a systematic evaluation of the effectiveness of the tests in predicting performance. As they continue a four-year project funded by NASA's National Space Biomedical Research Institute, they will see whether other tests could do better.

Andrew Liu, a research scientist in MIT's Man Vehicle Laboratory, has been leading the project, and began by comparing records of test results and actual performance from 40 astronauts, provided by Johnson Space Center and the Astronaut Office of NASA. Zakiya Tomlinson, a graduate student in the aeronautics and astronautics department, has been running simulation training tests here under the supervision of Liu and Charles Oman, director of the Man Vehicle Laboratory.

Liu presented the first report on the research on May 13 at the Aerospace Medical Association meeting in Boston. The results show “they're not good enough for decisions affecting their career path, but just for things like adjusting schedules,” says Tomlinson. “The tests might be suited for selecting training methods, like how many sessions they might need.”

Oman explains that “a lot more has been learned in recent years, about the psychological and physical sides of spatial intelligence. People think differently” about such tasks as mentally rotating a complex shape, but NASA's training has not yet adapted in light of new findings.

In NASA's astronaut training, as well as in actual operation of the robot arm in space, astronauts work in pairs with one operating the controls and another observing. In the next round of MIT tests, the training will simulate the role of the observer, Tomlinson explains.

This might help to determine how much of the ability is related to visual skills in spatial orientation, and how much has to do with manual dexterity in operating the controls. With the “observer” training, manual dexterity no longer makes a difference.

Eventually, the research might also lead to better ways of designing the actual control systems and displays to make the process easier and more intuitive to learn and to use, Tomlinson says.

As part of the research, Tomlinson and other team members spent time in Houston working with the actual system used for astronaut training. After she earns her masters degree, “I would love to go back and actually become a trainer,” she says.

Source: MIT

Explore further: Unique suit helps teach young people the dangerous effects of driving under the influence of illegal drugs

Related Stories

New arrivals in Antarctica

November 24, 2015

The next crew to live and work at the Concordia Antarctic research station has arrived in the white desert. ESA-sponsored medical doctor Floris van den Berg will take over experiments for future spaceflight from Beth Healey, ...

Gravity, who needs it? NASA studies your body in space

November 18, 2015

What happens to your body in space? NASA's Human Research Program has been unfolding answers for over a decade. Space is a dangerous, unfriendly place. Isolated from family and friends, exposed to radiation that could increase ...

Ten ways advanced computing catalyzes science

November 19, 2015

When researchers need to compare complex new genomes, or map new regions of the Arctic in high-resolution detail, or detect signs of dark matter, or make sense of massive amounts of functional MRI data, they turn to the high-performance ...

UK astronaut dreams of heavenly Christmas pudding

November 6, 2015

Brushing off any last-minute nerves, Britain's first astronaut to the International Space Station (ISS) insists he is more concerned about his out-of-this-world Christmas dinner than potential disaster.

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.