When Plants 'Think' Alike

May 23, 2008
When Plants 'Think' Alike
Both lignin and cellulose are found in the rigid cell walls of the xylem cells (those that conduct water) in the primitive plant, Selaginella. Credit: Zina Deretsky, National Science Foundation; Selaginella cross section SEM by Jing-Ke Weng, Clint Chapple, Purdue University; Lignin structure from Wout Bergjan, John Ralph, Marie Baucher (Annual Review of Plant Biology, Vol. 54:519-546, June 2003); Cellulose structure from http://www.chusa.jussieu.fr/disc/bio_cell/

Biologists have discovered that a fundamental building block in the cells of flowering plants evolved independently, yet almost identically, on a separate branch of the evolutionary tree--in an ancient plant group called lycophytes that originated at least 420 million years ago.

Researchers believe that flowering plants evolved from gymnosperms, the group that includes conifers, ginkgos and related plants. This group split from lycophytes hundreds of millions of years before flowering plants appeared.

The building block, called syringyl lignin, is a critical part of the plants' scaffolding and water-transport systems. It apparently emerged separately in the two plant groups, much like flight arose separately in both bats and birds.

Purdue University researcher Clint Chapple and graduate students Jing-Ke Weng and Jake Stout, along with post-doctoral research associate Xu Li, conducted the study with the support of the National Science Foundation, publishing their findings in the May 20, 2008, Proceedings of the National Academy of Sciences.

"We're excited about this work not only because it may provide another tool with which we can manipulate lignin deposition in plants used for biofuel production, but because it demonstrates that basic research on plants not used in agriculture can provide important fundamental findings that are of practical benefit," said Chapple.

The plant studied--Selaginella moellendorffii, an ornamental plant sold at nurseries as spike moss--came from Purdue colleague Jody Banks. While not a co-author on the paper, Banks helped kick-start the study of the Selaginella genome with NSF support in 2002, and is now scientific coordinator for the plant's genome-sequencing effort conducted by the Department of Energy Joint Genome Institute in Walnut Creek, Calif.

"Because Selaginella is a relict of an ancient vascular plant lineage, its genome sequence will provide the plant community with a resource unlike any other, as it will allow them to discover the genetic underpinnings of the evolutionary innovations that allowed plants to thrive on land, including lignin," said Banks.

Chapple and his colleagues conducted the recent study as part of a broader effort to understand the genetics behind lignin specifically, as the material is an impediment to some biofuel production methods because of its durability and tight integration into plant structures.

"Findings from studies such as this really have implications regarding the potential for designing plants to better make use of cellulose in cell walls," said Gerald Berkowitz, a program director for the Physiological and Structural Systems Cluster at the National Science Foundation and the program officer overseeing Chapple's grant. "Different forms of lignin are present in crop plant cell walls; engineering plants to express specifically syringyl lignin could allow for easier break down of cellulose. Overcoming this obstacle is an important next step for advancing second generation biofuel production."

Source: NSF

Explore further: With designer lignin, biofuels researchers reproduced evolutionary path

Related Stories

Turning biofuel waste into wealth in a single step

October 20, 2016

Lignin is a bulky chain of molecules found in wood and is usually discarded during biofuel production. But in a new method by EPFL chemists, the simple addition of formaldehyde could turn it into the main focus.

Unraveling the science behind biomass breakdown

October 18, 2016

Lignocellulosic biomass—plant matter such as cornstalks, straw, and woody plants—is a sustainable source for production of bio-based fuels and chemicals. However, the deconstruction of biomass is one of the most complex ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Self-sealing syringe prevents blood loss in hemophilic mice

October 28, 2016

(Phys.org)—For people whose blood does not clot appropriately, such as those with hemophilia, diabetes, or cancer, getting an injection or blood draw with a hypodermic needle is not a trivial matter. Because the needle ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(Phys.org)—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Gaia spies two temporarily magnified stars

October 28, 2016

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.