Water Vapor Detected in Protoplanetary Disks

March 19, 2008

Water is an essential ingredient for forming planets, yet has remained hidden from scientists searching for it in protoplanetary systems, the spinning disks of particles surrounding newly formed stars where planets are born. Now the detection of water vapor in the inner part of two extrasolar protoplanetary disks brings scientists one step closer to understanding water's role during terrestrial planet formation.

By maximizing the spectroscopic capabilities of NASA's Spitzer Space Telescope and high-resolution measurements from the Keck II Telescope in Hawaii, researchers from the California Institute of Technology and other institutes found water molecules in disks of dust and gas around two young stars. DR Tau and AS 205A, respectively around 457 and 391 light-years away from Earth, are each at the center of a spinning disk of particles that may eventually coalesce to form planets.

"This is one of the very few times that water vapor has been detected in the inner part of a protoplanetary disk--the most likely place for terrestrial planets to form," says Colette Salyk, a graduate student in geological and planetary sciences at Caltech. She is the lead author of a group of scientists reporting their findings in the March 20 issue of the Astrophysical Journal Letters.

Salyk and her colleagues first harnessed light-emission data captured by Spitzer to inspect dozens of young stars with protoplanetary disks. They honed in on DR Tau and AS 205A because these presented a large number of water emission lines--spikes of brightness at certain wavelengths that are a unique fingerprint for water vapor. "Only Spitzer is capable of observing these particular lines in a large number of disks because it operates above Earth's obscuring water-vapor-rich atmosphere," says Salyk.

To determine in what part of the disk the vapor resides, the team made high-resolution measurements at shorter wavelengths with NIRSPEC, the Near-InfraRed cross-dispersed echelle grating Spectrometer for the Keck II Telescope. Unlike Spitzer, which observed water lines blended together into clumps, NIRSPEC can resolve individual water lines in selected regions where the atmospheric transmission is good. The shape of each line relays information on the velocity of the molecules emitting the light. "They were moving at fast speeds," says Salyk, "indicating that they came from close to the stars, which is where Earthlike planets might be forming."

"While we don't detect nearly as much water as exists in the oceans on Earth, we see only a very small part of the disk--essentially only its surface--so the implication is that the water is quite abundant," remarks coauthor Geoffrey Blake, professor of cosmochemistry and planetary sciences and professor of chemistry at Caltech.

The presence of water in the inner disk may indicate its stage on the road to planet formation. A planet like Jupiter in our solar system grew as its gravitational field trapped icy solids spinning in the outer part of the sun's planetary disk. However, before Jupiter gained much mass, these same icy solids could have traveled towards the star and evaporated to produce water vapor such as that seen around DR Tau and AS 205A.

Although they have not detected icy solids in the extrasolar disks, says Salyk, "our observations are possible evidence for the migration of solids in the disk. This is an important prediction of planet-forming models."

These initial observations portend more to come, says coauthor Klaus Pontoppidan, a Caltech Hubble Postdoctoral Scholar in Planetary Science. "We were surprised at how easy it is to find water in planet-forming disks once we had learned where to look. It will take years of work to understand the details of what we see."

Indeed, adds Blake, "This is a much larger story than just one or two disks. With upcoming observations of tens of young stars and disks with both Spitzer and NIRSPEC, along with our data in hand, we can construct a story for how water concentrations evolve in disks, and hopefully answer questions like how Earth acquired its oceans."

Other authors on the paper are Fred Lahuis of Leiden Observatory in the Netherlands and SRON, the Netherlands Institute for Space Research; Ewine van Dishoeck, also of Leiden Observatory; and Neal Evans of the University of Texas at Austin.

Source: Caltech

Explore further: Soggy invaders from space

Related Stories

Soggy invaders from space

June 24, 2015

Is there a water shortage out there? It's an important question if you're looking for biology beyond Earth. Experts will tell you that, while other fluids may be able to incubate life (ammonia and liquefied natural gas come ...

Rosetta and Philae at comet 67P/Churyumov-Gerasimenko

June 22, 2015

Rosetta has been exploring comet 67P/Churyumov-Gerasimenko since summer 2014. In November 2014, the Philae lander landed on the surface of the comet. The first measurements by the scientific instruments allow conclusions ...

Year three: NASA SDO mission highlights

February 13, 2013

On Feb. 11, 2010, NASA launched an unprecedented solar observatory into space. NASA's Solar Dynamics Observatory (SDO) flew up on an Atlas V rocket, carrying instruments that scientists hoped would revolutionize observations ...

The solar system and beyond is awash in water

April 8, 2015

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly ...

How was the Earth formed?

December 10, 2014

Just how did the Earth—our home and the place where life as we know it evolved—come to be created in the first place? In some fiery furnace atop a great mountain? On some divine forge with the hammer of the gods shaping ...

Recommended for you

Ceres image: The lonely mountain

August 25, 2015

NASA's Dawn spacecraft spotted this tall, conical mountain on Ceres from a distance of 915 miles (1,470 kilometers).

Dawn spacecraft sends sharper scenes from Ceres

August 25, 2015

The closest-yet views of Ceres, delivered by NASA's Dawn spacecraft, show the small world's features in unprecedented detail, including Ceres' tall, conical mountain; crater formation features and narrow, braided fractures.

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.