A fresh look inside Mount St. Helens

Feb 19, 2008

Volcanoes are notoriously hard to study. All the action takes place deep inside, at enormous temperatures. So geophysicists make models, using what they know to develop theories about what they don’t know.

Research led by Gregory P. Waite, an assistant professor of geophysics at Michigan Technological University, has produced a new seismic model for figuring out what’s going on inside Mount St. Helens, North America’s most active volcano. Waite hopes his research into the causes of the earthquakes that accompany the eruption of a volcano will help scientists better assess the hazard of a violent explosion at Mount St. Helens and similar volcanoes.

Waite and co-authors Bernard A. Chouet and Phillip B. Dawson published their findings on February 19, 2008, in the Journal of Geophysical Research. Waite’s research was conducted during a Mendenhall Postdoctoral Fellowship with the U.S. Geological Survey (USGS).

Volcanoes don’t always erupt suddenly and violently. The most recent eruption of Mount St Helens, for example, began in October 2004 and is still going on. It’s what Waite and other volcanologists call a passive eruption, with thick and sticky lava squeezing slowly out of the ground like toothpaste from a tube.

When a volcano such as Mount St Helens erupts, it can cause a series of shallow, repetitive earthquakes at intervals so regular that they’ve been called “drumbeat earthquakes.” Until now, scientists generally believed that these earthquakes were caused by the jerky movements of a solid plug of molten rock traveling up from the volcano’s core, a process known as the stick-slip model.

Modeling of seismic data collected by Waite and colleagues dispute that explanation. “The regularity and similarity of the shallow earthquakes seem consistent with a stick-slip model,” said Waite. Broadband measurements indicated that the energy is concentrated in a short bandwidth—between .5 and 2 Hz—and the earthquakes have nearly identical wave forms. Interestingly, the first motions observed at all of the seismic stations were the same.

“But this is not typical of a stick-slip event,” Waite said. “Rather, it suggests a source with a net volume change, such as a resonating fluid-filled crack.”

The fluid in the crack most likely is steam, derived from the magma and combined with water vaporized by the heat of the molten rock. A continuous supply of heat and fluid keeps the crack pressurized and the “drumbeats” beating, Waite explained.

“The pressurized crack in our model is filled with steam that could conceivably drive a small explosive eruption if the pattern (of earthquakes) we observe is disturbed,” he noted. Mount St. Helens erupted violently in 1980, losing nearly 1,000 feet of its cone-shaped top.

“The cause of Mount St. Helens earthquakes during the 2004-2008 eruption has been a matter of great debate,” said Seth Moran, the principal USGS seismologist monitoring the current eruption. “Greg collected a fantastic dataset with temporary seismometers and used highly sophisticated modeling techniques to produce a robust and intriguing model for the process responsible for those earthquakes. His model is somewhat different from the hypothesis that many other Mount St. Helens researchers have been using,” the seismologist went on to say, “and we are adjusting our understanding of the mechanics underlying the current eruption to incorporate his results.”

Waite’s co-author, Chouet, who also works for the USGS, proposed a similar seismological model for volcanoes in Hawaii, where the lava is much more fluid and flows more easily. This is the first time the model has been applied to volcanoes like Mount St. Helens, with slow-flowing, sticky lava.

Source: Michigan Technological University

Explore further: Radioisotope studies show the continental crust formed 3 billion years ago

Related Stories

UW team explores large, restless volcanic field in Chile

Dec 01, 2014

If Brad Singer knew for sure what was happening three miles under an odd-shaped lake in the Andes, he might be less eager to spend a good part of his career investigating a volcanic field that has erupted ...

And now, the volcano forecast

Oct 22, 2014

Scientists are using volcanic gases to understand how volcanoes work, and as the basis of a hazard-warning forecast system.

New view of Rainier's volcanic plumbing

Jul 17, 2014

By measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier's deep volcanic plumbing and partly molten rock ...

Recommended for you

ESA image: Northwest Sardinia

Jul 03, 2015

This image over part of the Italian island of Sardinia comes from the very first acquisition by the Sentinel-2A satellite.

Experiments open window on landscape formation

Jul 02, 2015

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

NASA image: Canadian wildfires continue

Jul 02, 2015

Canada is reeling from an early fire season this year as dozens of fires ravage at least three provinces of the country. All of the following reports are as of July 2, 2015.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) Feb 21, 2008
A 3D multicomponent seismic array could find the geometry of the volcanic plumbing from microseismic studies, or even a vibrator survey.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.