NASA satellite reveals unprecedented view of mysterious 'night-shining' clouds

December 10, 2007
Noctilucent Clouds
This image shows one of the first ground sightings of noctilucent clouds in the 2007 season. Credit: Veres Viktor of Budapest, Hungary taken on June 15, 2007

NASA's AIM satellite has provided the first global-scale, full-season view of iridescent polar clouds that form 50 miles above Earth’s surface.

The Aeronomy of Ice in the Mesosphere (AIM) mission is the first satellite dedicated to the study of these noctilucent or "night-shining" clouds. They are called "night shining" clouds by observers on the ground because their high altitude allows them to continue reflecting sunlight after the sun has set below the horizon. AIM has provided the first global-scale view of the clouds over the entire 2007 Northern Hemisphere season with an unprecedented horizontal resolution of 3 miles by 3 miles.

Very little is known about these 'clouds at the edge of space', also called Polar Mesospheric Clouds. How do they form over the summer poles, why are they being seen at lower latitudes than ever before, and why have they been growing brighter and more frequent" During its mission lifetime, AIM will observe a total of two complete polar mesospheric cloud seasons in each polar region, documenting for the first time the entire complex life cycle of Polar Mesospheric Clouds.

"The AIM mission has changed our view of Polar Mesospheric Clouds and their surroundings after only one season of observations," stated AIM Principal Investigator James Russell III of Hampton University, Hampton, Va. "The measurements show the brightest clouds ever observed with more variability and structure than expected, signifying extreme sensitivity to the environment in which the clouds form. They also show that the clouds exist over a broader range in height than was believed to be the case before AIM was launched. The unprecedented sensitivity has revealed for the first time the presence of very small ice particles believed to be responsible for the mysterious radar phenomenon known as "Polar Mesospheric Summertime Echoes".

The bright "night-shining" clouds were seen by the spacecraft's instruments regularly, first appearing on May 25th and lasting until August 25th.

The AIM satellite reported daily observations of the clouds at all longitudes and over a broad latitude range extending from 60 degrees North to 85 degrees North. The AIM satellite is currently making the first global observations of the Southern Hemisphere cloud season. The clouds consist of ice crystals formed when water vapor condenses onto dust particles in these coldest regions of our planet, at temperatures that may dip to minus 210 to minus 235 degrees Fahrenheit.

New results from AIM's first Northern Hemisphere season observations show:

-- The most detailed picture of the clouds ever collected showing that they appear every day, they are widespread, and they are highly variable on hourly to daily time scales.
-- That Polar Mesospheric Cloud brightness varies over horizontal scales of about two miles; and over small regions, clouds measured by AIM are ten-fold brighter than measured by previous space-based instruments.
-- The unexpected result that mesospheric ice occurs in one continuous layer extending from below the main peak at 51 miles up to around 55 miles.
-- Observations of a previously suspected, but never before seen, population of very small ice particles believed to be responsible for strong radar echoes from the summertime mesosphere. This was made possible because of the unprecedented sensitivity of the AIM measurements.
-- Polar Mesospheric Cloud structures resolved for the first time that exhibit complex features present in normal tropospheric clouds. This startling similarity suggests that the mesosphere may share some of the same dynamical processes responsible for weather near the surface. If this similarity holds up in further analysis, this opens up an entirely different view of potential mechanisms that can explain why the clouds form and how they vary.

The new results were produced by David Rusch and the Cloud Imaging and Particle Size experiment team, University of Colorado, Laboratory for Atmospheric and Space physics (result 1, 2 and 5); and Larry Gordley and Mark Hervig and the Solar Occultation for Ice Experiment team, Gats, Inc., Newport News, Va. (results 3 and 4).

Source: Goddard Space Flight Center

Explore further: Glider pilots aim for the stratosphere

Related Stories

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...

Image: Understanding the atmosphere of Venus

November 10, 2015

On 9 November 2005, 10 years ago today, ESA's Venus Express spacecraft left Earth and began its 153-day journey to Venus. The craft then spent eight years studying the planet in detail before the mission came to an end in ...

India sees clean cooking as climate action that saves lives

November 11, 2015

Kamlesh feeds the flames of a crude clay cookstove with kindling, kerosene and sunbaked discs of cow dung. She breathes in the billowing smoke, as she does for hours every day. Her eyes water and sting. Her throat feels scratchy ...

Bringing together storm tracks and clouds

September 9, 2015

We often talk about future climate change in terms of "global warming." But when it comes to the impacts of global warming, regional changes in winds and precipitation are more relevant. The latter depend on how the circulation ...

Jupiter's moon Europa

September 30, 2015

Jupiter's four largest moons – aka. the Galilean moons, consisting of Io, Europa, Ganymede and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source ...

Clouds, clouds, burning bright

April 19, 2011

( -- High up in the sky near the poles some 50 miles above the ground, silvery blue clouds sometimes appear, shining brightly in the night. First noticed in 1885, these clouds are known as noctilucent, or "night ...

Recommended for you

Can Paris pledges avert severe climate change?

November 26, 2015

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 11, 2007
Now that's good science. And just what is needed to help rope in some higher resolution in those wobbly GCM. Real basic research, no rehashing data-sets in new and creative ways just to crank out some new numbers for a paper.

If the general public knew how little was actually understood about cloud formation, sensitivity and how they feedback into the climate models on which hundred of billions of dollars in policy changes are about to be based...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.