Exposing the Nature of Cosmic Liaisons

October 16, 2007
Exposing the Nature of Cosmic Liaisons
Risa Wechsler has developed a new tool for measuring how galaxy interactions, such as that which drew out the trail of stars in the Tadpole Galaxy (pictured here), affect the rate of star formation.

Risa Wechsler of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) and her collaborators have devised a powerful technique to study how interactions between galaxies affect star formation. Their results shed light on the fundamental processes that drive galactic evolution.

In the early universe, the rate of star formation was higher than it is today. Galaxies frequently collided and coalesced with one another, spawning a profusion of new stars with each encounter. Although such prolific events are now relatively infrequent, less spectacular galactic interactions continue to forge stars and shape galaxies. Observational studies suggest that even these interactions increase the rate of star formation, but there is little consensus on the frequency and magnitude of such events.

"To study this, you need to observe pairs of galaxies, which have either just interacted or are about to interact, and determine whether their star formation rate is higher or lower than similar galaxies that haven't interacted," said Wechsler, who collaborated with researchers from the Center for Cosmology at the University of California in Irvine and the University of Chicago. Although the idea is straightforward, its execution is problematic. Galaxy interactions are highly complex and dynamic, and observation yields a mere snapshot of the unfolding events.

One complication is that the majority of galaxies exist in groups, where frequent interactions may have exhausted a galaxy's star-forming resources. In such crowded environments, it is difficult to discern the immediate effects of an isolated interaction. According to Wechsler, "it's very hard from observations alone to figure out how to control for this."

To overcome this technical hurdle, Wechsler used a cosmological simulation of dark matter and galaxies. “The simulation allowed us to see statistically how galaxies are connected to their environment. This enabled us to estimate the bias of pairs [toward group environments], and then to try to define selection criteria that would give us isolated pairs and appropriate controls." The criteria also controlled for galaxy age and brightness, thus optimizing their comparability.

Elizabeth Barton, Wechsler's collaborator from UCI, then used these criteria to analyze a subset of the 2dF astronomical survey. The analysis revealed that 14% of the galaxies in close pairs exhibited star formation rates boosted by at least a factor of 5, and on average a factor of 30. "This is the first clean estimate of triggered star formation from a large galaxy sample," Wechsler noted. "Our selection criteria allow us to constrain how the star formation rate changes in interactions, and will help us figure out how star formation contributes to galaxy evolution."

Source: by Elizabeth Buchen, SLAC

Explore further: A fresh perspective on an extraordinary cluster of galaxies

Related Stories

Image: Hubble observes galaxies' evolution in slow motion

September 21, 2015

It is known today that merging galaxies play a large role in the evolution of galaxies and the formation of elliptical galaxies in particular. However there are only a few merging systems close enough to be observed in depth. ...

Neutral hydrogen gas in galaxy clusters

September 9, 2015

Most galaxies are members of a cluster, a grouping of several to thousands of galaxies. Our Milky Way, for example, is a member of the "Local Group," a set of about fifty galaxies whose other large member is the Andromeda ...

Recommended for you

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.