The Gobbling Dwarf that Exploded

Jul 13, 2007
The gobbling dwarf that exploded
Left: artist´s impression of the favoured configuration for the progenitor system of SN2006X before the explosion. The White Dwarf (on the right) accretes material from the Red Giant star, which is losing gas in the form of stellar wind (the diffuse material surrounding the giant). Only part of the gas is accreted by the White Dwarf, through a so-called accretion disk which surrounds the compact star. The remaining gas escapes the system and eventually dissipates into the interstellar medium. The Red Giant star has a radius about 100 times larger than our Sun, while the White Dwarf is about 100 times smaller than the Sun. Right: Once the mass of the White Dwarf has reached a critical limit, a thermonuclear explosion completely disrupts the star, ejecting its material with velocities up to a tenth of the speed of light. Twenty days after the explosion, when the supernova reaches its maximum brightness, the ejected material has reached a size of roughly 450 times the distance from Earth to the Sun. The enormous amount of light emitted by the supernova passes through the surrounding material before being detected by us, thus revealing gas shells which were ejected by the Red Giant in the last few hundred years before the explosion. These density enhancements were produced either by fluctuations in the mass-loss rate of the Red Giant, or by small recurrent explosive episodes on the surface of the White Dwarf in the final phases of its existence. Credit: ESO

A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant.

Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe.

However, despite significant recent progress, the nature of the stars that explode and the physics that governs these powerful explosions have remained very poorly understood.

In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits another star. Due to the close interaction and the strong attraction produced by the very compact object, the companion star continuously loses mass, 'feeding' the white dwarf. When the mass of the white dwarf exceeds a critical value, it explodes.

The team of astronomers studied in great detail SN 2006X, a Type Ia supernova that exploded 70 million light-years away from us, in the splendid spiral Galaxy Messier 100. Their observations led them to discover the signatures of matter lost by the normal star, some of which is transferred to the white dwarf.

The observations were made with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted at ESO's 8.2-m Very Large Telescope, on four different occasions, over a time span of four months. A fifth observation at a different time was secured with the Keck telescope in Hawaii. The astronomers also made use of radio data obtained with NRAO's Very Large Array as well as images extracted from the NASA/ESA Hubble Space Telescope archive.

"No Type Ia supernova has ever been observed at this level of detail for more than four months after the explosion," says Ferdinando Patat, lead author of the paper reporting the results in this week's issue of Science Express, the online version of the Science research journal. "Our data set is really unique."

The most remarkable findings are clear changes in the absorption of material, which has been ejected from the companion giant star. Such changes of interstellar material have never been observed before and demonstrate the effects a supernova explosion can have on its immediate environment. The astronomers deduce from the observations the existence of several gaseous shells (or clumps) which are material ejected as stellar wind from the giant star in the recent past.

"The material we have uncovered probably lies in a series of shells having a radius of the order of 0.05 light-years, or roughly 3 000 times the distance between Earth and the Sun", explains Patat. "The material is moving with a velocity of 50 km/s, implying that the material would have been ejected some 50 years before the explosion."

Such a velocity is typical for the winds of red giants. The system that exploded was thus most likely composed of a white dwarf that acted as a giant 'vacuum cleaner', drawing gas off its red giant companion. In this case however, the cannibal act proved fatal for the white dwarf. This is the first time that clear and direct evidence for material surrounding the explosion has been found.

"One crucial issue is whether what we have seen in SN 2006X represents the rule or is rather an exceptional case," wonders Patat. "But given that this supernova has shown no optical, UV and radio peculiarity whatsoever, we conclude that what we have witnessed for this object is a common feature among normal SN Ia. Nevertheless, only future observations will give us answers to the many new questions these observations have posed to us."

These results are reported in a paper in Science Express published on 12 July 2007 ("Detection of circumstellar material in a normal Type Ia Supernova", by F. Patat et al.).

Source: European Southern Observatory

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Supernova ignition surprises scientists

22 hours ago

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

The dreadful beauty of Medusa

May 20, 2015

Astronomers using ESO's Very Large Telescope in Chile have captured the most detailed image ever taken of the Medusa Nebula. As the star at the heart of this nebula made its transition into retirement, it ...

NuSTAR captures possible 'screams' from zombie stars

Apr 30, 2015

Peering into the heart of the Milky Way galaxy, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) has spotted a mysterious glow of high-energy X-rays that, according to scientists, could be the "howls" ...

In the realm of eternal ice

Apr 23, 2015

On 6 November 2010, the light of the star known as NOMAD1 0856-0015072 in the Cetus constellation dimmed. What had happened? A dwarf planet at the edge of the solar system had moved in front of the distant ...

Recommended for you

What are extrasolar planets?

16 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

A curious family of giant exoplanets

17 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

Astrobiology students explore alien environment on Earth

17 hours ago

Sonny Harman never thought he'd be able to travel far enough to do field work. That's because the Penn State doctoral student studies atmospheres on other planets. But to his surprise, Harman recently stepped ...

NASA image: Hubble revisits tangled NGC 6240

17 hours ago

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. Hubble previously released an image of this galaxy back in 2008, but the knotted region, shown ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.