Panasonic develops a next-generation robust image sensor

May 14, 2007
Panasonic develops a next-generation robust image sensor

Panasonic today announced the development of a robust and lightfast image sensor for the next generation.

Panasonic's technological breakthrough allows a robust MOS image sensor for use under harsh sunlight for more than 20 years. Unlike traditional image sensors with polymer onchip microlenses and dyed color filters, the revolutionary MOS image sensor has digital-microlenses and photonic color filters, both made of inorganic materials that are inherently fade-resistant and quite robust.

"We can make a significant contribution to our customers by creating new applications with this new sensor. We can also propose various market solutions like automobile and outdoor usages by making the most of its outstanding robustness," said Taku Gobara, Director of Corporate Application Specific Standard Products Division, Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

Conventional MOS image sensors require polymer onchip microlenses and dyed RGB color filters, which are fragile and extremely susceptible to sunlight exposure and a change in temperature. As a result, color images captured by a camera used under direct sunlight, including the ultra-violet (UV) portion, and higher temperature conditions will fade faster.

The cutting-edge semiconductor process technology can realize the pattering of an array of digital-microlenses made of an inorganic material in subwavelength dimensions. A digital-microlens can be formed by patterning digitally the inorganic material in concentric rings, which works out as a conventional onchip microlens to gather more light onto the photo diode area. The light path of each digital-microlens can therefore readily be designed according to its relative position on the image area. As a result, a uniform sensitivity can be achieved across the image area in any camera module in use.

Furthermore, photonic color filters made of inorganic materials have been implemented for the first time by the photonic crystal technology, which allows the photonic color filters to select any colors form UV to infrared spectral regions. The photonic color filters can also provide a variety of camera modules with lightfastness that is essential for an increasing number of tough end uses such as security cameras and automotive cameras.

Source: Panasonic

Explore further: First global topographic model of Mercury among MESSENGER's latest delivery to the planetary data system

Related Stories

Curiosity cores hole at 'Lubango' fracture zone

May 2, 2016

NASA's Curiosity Mars Science Laboratory (MSL) rover successfully bored a brand new hole in Mars at a tantalizing sandstone outcrop in the 'Lubango' fracture zone this past weekend on Sol 1320, Apr. 23, and is now carefully ...

Image: Hubble frames a unique red rectangle

April 11, 2016

The star HD 44179 is surrounded by an extraordinary structure known as the Red Rectangle. It acquired its moniker because of its shape and its apparent color when seen in early images from Earth. This strikingly detailed ...

Patterns of glowing sharks get clearer with depth

April 25, 2016

A team of researchers led by scientists from the American Museum of Natural History has found that catsharks are not only able to see the bright green biofluorescence they produce, but that they increase contrast of their ...

Modeling to save a rare plant

March 23, 2016

Human activities continue to expand. At the same time, an increasing number of plants face habitat loss and fragmentation. In fact, more than 700 plants are classified as endangered in the United States.

Recommended for you

Rays provide power for an electric generator

May 31, 2016

Scientists from the RIKEN Quantitative Biology Center in Japan removed the electric organ from a torpedo and chemically stimulated the organ by injecting a solution of the neurotransmitter acetylcholine though a syringe. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.