Labeling Cells with Magnetic Nanoparticles

February 20, 2007

Investigators at the German Cancer Research Center have developed silica-coated iron oxide nanoparticles that allow for cell tracking in a live animal using magnetic resonance imaging (MRI). More sensitive methods for tracking cells in vivo could lead to a better understanding of how cancer spreads throughout the body or how the immune system reacts to tumors.

Fabian Kiessling, Ph.D., led this study, whose initial stages involved preparing iron oxide nanoparticles and coating them with an ultrathin layer of various silicon-containing chemicals.

During this part of their study, the investigators determined that the nature of this coating had a profound impact on the magnetic properties of the resulting nanoparticle. Only those coated with silicon dioxide retained the optimal magnetic properties needed to generate the strongest MRI signal per particle.

Next, the researchers determined that cells will take up these silicon dioxide-coated iron oxide particles in sufficient quantities to produce an observable MRI signal. One interesting result from these experiments was that cells appear to use a different mechanism to take up these small nanoparticles than they do to take up the larger dextran-coated iron oxide particles now being used in clinical MRI studies.

This work is detailed in a paper titled, “Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging.” Investigators from Merck and the University of Munich also participated in this study. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Magnetic hyperthermia, an auxiliary tool in cancer treatments

Related Stories

Nanoparticles to kill cancer cells with heat

June 17, 2015

Heat may be the key to killing certain types of cancer, and new research from a team including National Institute of Standards and Technology (NIST) scientists has yielded unexpected results that should help optimize the ...

New nanoparticle delivers, tracks cancer drugs

October 29, 2013

(Phys.org) —UNSW chemical engineers have synthesised a new iron oxide nanoparticle that delivers cancer drugs to cells while simultaneously monitoring the drug release in real time.

Nanoparticles for controlled drug release

June 13, 2013

Scientists from CIC bioGUNE and the Laboratoire de Chimie des Polymères Organiques (LCPO) in Bordeaux have jointly undertaken a project to develop "smart" nanoparticles. These polymeric particles act as "nanomissiles" against ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.