New nanotechnology able to examine single molecules, aiding in determining gene expression

January 24, 2007

A new nanotechnology that can examine single molecules in order to determine gene expression, paving the way for scientists to more accurately examine single cancer cells, has been developed by an interdisciplinary team of researchers at UCLA's California Nanosystems Institute (CNSI), New York University's Courant Institute of Mathematical Sciences, and Veeco Instruments, a nanotechnology company.

Their work appears in the January issue of the journal Nanotechnology.

Previously, researchers have been able to determine gene expression using microarray technology or DNA sequencing. However, such processes could not effectively measure single gene transcripts—the building blocks of gene expression. With their new approach, the researchers of the work reported in Nanotechnology were able to isolate and identify individual transcript molecules—a sensitivity not achieved with earlier methods.

"Gene expression profiling is used widely in basic biological research and drug discovery," said Jason Reed of UCLA's Department of Chemistry and Biochemistry and the study's lead author. "Scientists have been hampered in their efforts to unlock the secrets of gene transcription in individual cells by the minute amount of material that must be analyzed. Nanotechnology allows us to push down to the level of individual transcript molecules."

"We are likely to see more of these kinds of highly multi-disciplinary research aimed at single molecule sequencing, genomics, epigenomic, and proteomic analysis in the future," added Bud Mishra, a professor of Computer Science, Mathematics, and Cell Biology from NYU's Courant Institute and School of Medicine. "The most exciting aspect of this approach is that as we understand how to intelligently combine various components of genomics, robotics, informatics, and nanotechnology—the so-called GRIN technology—the resulting systems will become simple, inexpensive, and commonplace."

Source: New York University

Explore further: Engineers make nanoscale 'muscles' powered by DNA

Related Stories

Engineers make nanoscale 'muscles' powered by DNA

November 18, 2016

The base pairs found in DNA are key to its ability to store protein-coding information, but they also give the molecule useful structural properties. Getting two complementary strands of DNA to zip up into a double helix ...

How nanotechnology could detect and treat cancer

May 18, 2016

A growing field called nanotechnology is allowing researchers to manipulate molecules and structures much smaller than a single cell to enhance our ability to see, monitor and destroy cancer cells in the body.

Purdue scientists treat cancer with RNA nanotechnology

September 14, 2005

Using strands of genetic material, Purdue University scientists have constructed tiny delivery vehicles that can carry anticancer therapeutic agents directly to infected cells, offering a potential wealth of new treatments ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.