Rice takes zeolite design Into 21st century using TeraGrid

December 13, 2006

A room's design helps define how people interact inside it, and it's much the same in the molecular world. The atomic layout of molecular spaces can provoke very different reactions from chemicals that meet there, in much the way that an intimate bistro and a bustling cafeteria might evoke different interactions among dinners.

One class of substances that chemists often tap for these spatially unique properties are zeolites, silicate minerals with a porous, Swiss-cheese-like structure. For decades, chemists have relied on zeolites to catalyze chemical reactions on an industrial scale. They are used to make everything from gasoline and asphalt to laundry detergent and aquarium filters.

So useful are zeolites that scientists have sought for decades to improve upon Mother Nature's ability to make them. In the past 50 years, the catalog of naturally occurring zeolites – there are about 50 of them – has been bolstered to approximately 180 with the addition of synthetic varieties, minerals whose architecture was found to be, much like a building's, suitable for a particular purpose.

Today, Rice University physicist Michael Deem is taking zeolite design into the 21st Century, using a combination of supercomputers at the University of Texas at Austin and disused computing cycles from more than 4,300 idling desktop PCs at Purdue University to painstakingly calculate many conceivable atomic formulations for zeolites.

Deem's zeolite database contained 3.4 million structures in early December, and it's still growing. By studying the catalog, scientists might find structures that are more efficient, either in terms of energy inputs or in waste byproducts.

"We're working with a major oil company to look at the structures in hopes of finding new catalysts for chemical and petrochemical applications," said Deem, the John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy.

In the current project, Deem and former postdoctoral researcher David Earl, now an assistant professor of chemistry at the University of Pittsburgh, worked with experts from the UT's Texas Advanced Computing Center and Purdue's Rosen Center for Advanced Computing to run computer simulations on multiple TeraGrid supercomputing systems, including systems at TACC, Purdue, Argonne National Labs, National Center for Supercomputing Applications and San Diego Supercomputing Center. The NSF-funded TeraGrid is the world's largest, most comprehensive distributed cyberinfrastructure for open scientific research.

Deem and Earl were able to harness the distributed, heterogeneous computing resources on the TeraGrid network into a single virtual environment for their simulations.

"This project could not have been accomplished in a one- to three-year time frame without the TeraGrid," Deem said.

Source: Rice University

Explore further: Making sense of funny bone from cartoon caption contest results

Related Stories

Keeping beef in the center of the plate

August 11, 2015

The United States' cow herd saw its highest numbers—132 million head—in 1975. Over the last 40 years those numbers have diminished, with the USDA reporting 89.8 million cattle within the country at the beginning of 2015.

Leveraging the Internet's unique data repositories

July 10, 2015

Sometimes, data doesn't look like data. But when circumstances conspire and the right researchers come along, interesting facets of human nature reveal themselves. Last.fm and World of Warcraft are two entities made possible ...

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.