Researchers make molecules 'pose' for photograph

Oct 20, 2006

For anyone who has ever had trouble getting children to stand still for family photographs, consider the frustration of scientists who have always wanted to photograph isolated gas phase molecules, but they just wouldn’t hold still long enough.

The rapid tumbling motions of gas phase molecules, such as those in the air around us, means that at any instant in time, the molecules are pointing in many different directions, and this blurs any image that may be recorded.

Now, using a pair of carefully crafted femtosecond laser pulses, a team of researchers at The Open University and the National Research Council of Canada have forced molecules to line up in the same direction to "pose" for a photograph.

When combined with the ultra-fast shutter speeds such as those provided by ultrashort pulses of X-ray light produced at some of the world’s largest facilities, such as the European X-Ray Laser Project XFEL near Hamburg, which is being built to meet just this goal, this technique will allow for sharp images of isolated molecules to be recorded.

This new research “Field-free three-dimensional alignment of polyatomic molecules” is to be published in Physical Review Letters on November 3 2006.

Co-author Dr Jonathan Underwood of The Open University’s Department of Physics and Astronomy says: “This new technique means another of the barriers to understanding the science of our world has been lowered. This technique will allow us to take photographs in the very near future from which we’ll be able to map the atomic details of molecules as they re-arrange and undergo chemical processes.”

Source: The Open University

Explore further: Revealed: Positronium's behavior in particle billiards

Related Stories

Scientists unravel elusive structure of HIV protein

Jul 01, 2015

HIV, or human immunodeficiency virus, is the retrovirus that leads to acquired immunodeficiency syndrome or AIDS. Globally, about 35 million people are living with HIV, which constantly adapts and mutates ...

Self-assembly of molecular Archimedean polyhedra

Jul 01, 2015

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

Chemists characterize 3-D macroporous hydrogels

Jun 30, 2015

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Recommended for you

Revealed: Positronium's behavior in particle billiards

9 hours ago

Collision physics can be like a game of billiards. Yet in the microscopic world, the outcome of the game is hard to predict. Fire a particle at a group of other particles, and they may scatter, combine or ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.