Researchers Create Improved Magnetic-Semiconductor Sandwich

October 2, 2006

Researchers at Ohio University have created an improved magnetic semiconductor that solves a problem spintronics scientists have been investigating for years.

Unlike classic or vintage electronics that operate on electronic charges, spin-based electronics focuses on the spin of electrons to carry and store information. Researchers predict spintronics will revolutionize the electronics industry by making devices faster, improving storage capacity and reducing the amount of power needed to run them.

Spintronics technology has not been widely applied yet, however, because scientists have had difficulty controlling, manipulating and measuring the electrons.

In a paper published online today in Physical Review Letters, a team of Ohio University and Ohio State University scientists led by postdoctoral fellow Erdong Lu have created an effective interface between a semiconductor and ferromagnetic metal. The two-layer “sandwich” of gallium nitride (GaN) and manganese gallium (MnGa) nearly eliminates any intermixing of the two layers and allows the spin to be “tuned.”

“We found a way to grow the metal on the semiconductor. The crystalline match between the two materials was nearly perfect. The advantage of this finding is in the growth process. By adjusting the conditions of the growth, we can tune the spin,” said Arthur Smith, associate professor of physics and astronomy and director of Ohio University’s Nanoscale & Quantum Phenomena Institute.

Magnetization was controlled by monitoring a property of the growth called reconstruction. Through the monitoring process, researchers could predict the properties of the spin.

“It has to do with the ratio of manganese and gallium,” Smith said.

The researchers also found that this new magnetic-semiconductor bilayer will operate at room temperature. Other materials have only worked at very low temperatures, which makes them impractical for commercial applications.

Source: Ohio University

Explore further: Rice wins $2.4 million to study many-antenna wireless

Related Stories

Rice wins $2.4 million to study many-antenna wireless

November 24, 2015

Rice University researchers have won $2.4 million from the National Science Foundation (NSF) to conduct the most extensive experimental research yet of wireless technology that uses 100 or more antennas per base station to ...

Spider webs yield clues to stickier glues

November 18, 2015

Spider webs are notoriously sticky. Although they only take a second to swat down, shaking them off your hands can be an exercise in frustration. But that stubborn tackiness could come in handy when designing smart synthetic ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.