Clemson research cleans up with edible oil

September 13, 2006

Oil and water don't mix, and that could be the key to edible vegetable-based oil being the answer to contaminant clean-up.

Clemson University researchers, in conjunction with the Savannah River National Laboratory (SRNL), are testing vegetable oil as a way to prevent contaminants from getting into groundwater aquifers. They say the method has the potential to help clean up chlorinated solvents, which are among the most common groundwater contaminants caused by industry. The study, which is taking place at the U.S. Department of Energy's Savannah River Site, is funded with a $35,000 grant from SRS through the South Carolina Universities Research and Education Foundation (SCUREF).

Clemson University geologist Larry Murdoch said the oil is injected through hydraulic fractures made 20 to 30 feet into the ground. When injected, the vegetable oil draws in oil-based contaminants that have leaked from pipes or tanks. If mixed with water, the contaminants separate as droplets, with small amounts dissolving into the water and making it hazardous. But, if another oil is introduced, the contaminants steer clear of the water, drawn instead towards the edible-oil source.

"Something else can happen to clean up the contaminants," said Murdoch. "Some microbes in the ground subsurface will degrade solvents. The edible oils create the right conditions for those kinds of microbes to flourish, so they seek out the contaminants and break them down. We hope the oil will both trap and destroy contaminants underground."

SRNL Laboratory Director Todd Wright of Washington Savannah River Company said collaborative research that combines the expertise at Clemson with that of SRNL is one of the best ways to advance the development of new methods for cleaning up and restoring the environment.

"By working together, making use of our respective knowledge bases, we can add new, cost-effective tools to the nation's toolbox for addressing widespread environmental issues," he said.

Since February, SRNL investigators have monitored levels of contaminant vapors and other indicators to determine whether the oil is attracting the contaminants at the test site. Murdoch said preliminary results are exciting, suggesting the process is working as anticipated. The project wraps up at the end of September.

Source: Clemson University

Explore further: Researchers find new, inexpensive way to clean water from oil sands production

Related Stories

A row-bot that loves dirty water

November 23, 2015

Polluted water can at times make swimming in the sea or a pool risky, on the other hand aquatic organisms such as water boatman need the nutrients in dirty water to feed on. Taking inspiration from water beetles and other ...

Shell, Nigeria accused over oil spill clean up

November 3, 2015

Shell was on Tuesday accused of making false claims about the extent of its oil spill clean-up operations in Nigeria and urged to take more action to help worst-hit communities.

How much water does US fracking really use?

September 15, 2015

Energy companies used nearly 250 billion gallons of water to extract unconventional shale gas and oil from hydraulically fractured wells in the United States between 2005 and 2014, a new Duke University study finds.

Recommended for you

Don't forget plankton in climate change models, says study

November 26, 2015

A new study from the University of Exeter, published in the journal Ecology Letters, found that phytoplankton - microscopic water-borne plants - can rapidly evolve tolerance to elevated water temperatures. Globally, phytoplankton ...

Can Paris pledges avert severe climate change?

November 26, 2015

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.