NSF Launches Distributed Data Analysis of Neutron Scattering

Jul 05, 2006
NSF Launches Distributed Data Analysis of Neutron Scattering
The DANSE project will integrate new materials theory with high-performance computing, using data from facilities such as the Department of Energy's new Spallation Neutron Source in Oak Ridge, Tenn. In this image, Rick Martineau of Los Alamos National Laboratory gives a final inspection to a componant of the SNS prior to shipment. Credit: Leroy N. Sanchez, Los Alamos National Laboratory

The National Science Foundation (NSF) has awarded nearly $12 million to the California Institute of Technology for computer software to analyze neutron-scattering experiments. The work could show how to design new materials for a huge variety of applications in transportation, construction, electronics and space exploration.

The five-year Distributed Data Analysis for Neutron Scattering Experiments (DANSE) project is led by Brent Fultz, a professor of materials science and applied physics at Caltech, with co-principal investigators Michael A. G. Aivazis of the Center for Advanced Computing Research at Caltech, and Ian S. Anderson of the Spallation Neutron Source (SNS) in Oak Ridge, Tenn.

Neutron scattering is a method of analyzing the stability of materials, molecules, and condensed matter at various temperatures and pressures by looking at the positions and motions of the atoms that making up the materials. According to Fultz, the research will find the principles behind how atoms can be combined to form stable materials and will eventually show how new materials could be optimized for characteristics such as mechanical strength, electrical conductivity, energy storage and corrosion resistance.

The low intensities of today's neutron sources have been impaired many neutron-scattering measurements. That will change in 2008 as the SNS, constructed by the Department of Energy at a cost of $1.4 billion, begins to operate at high power. The unprecedented quality of data from the SNS will allow a deeper understanding of atom interactions, for example, and will require better methods for interpreting the measurements.

NSF's DANSE project arises from recent developments in computing, materials theory and the new experimental facilities at the SNS. The project integrates new materials theory with high-performance computing to push the science of the SNS and other neutron facilities to a higher level of sophistication. The project will also extend a software framework developed at Caltech to include distributed computing on today's networked computing hardware.

The DANSE project is centered at Caltech where its software technology effort, neutron-scattering research, and project administration will be conducted. The grant includes smaller awards to four other universities for subfields of neutron-scattering research: neutron diffraction (Simon Billinge, Michigan State University); engineering diffraction (Erstan Ustundag, Iowa State University); small-angle scattering (Paul Butler, University of Tennessee); and reflectometry (Paul Kienzle, University of Maryland). All these different subfields need advanced scientific computing for comparing experimental data to underlying physical models or simulations, and all will benefit from a shared development effort. DANSE will develop new methods for doing neutron-scattering research in these subfields.

The NSF funding will also support an outreach effort in teacher education, which is being created by Iowa State University.

Source: NSF

Explore further: Team invents microscopic sonic screwdriver

Related Stories

Mixing up a batch of stronger metals

Apr 14, 2015

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength ...

Graphene looking promising for future spintronic devices

Apr 10, 2015

Researchers at Chalmers University of Technology have discovered that large area graphene is able to preserve electron spin over an extended period, and communicate it over greater distances than had previously ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.